find the value x to the power of 2+ y to the power of 2,if x+y=6,xy=8
Answers
Given:
If x-y=6 and xy=8, what is the value of x²+y²?
Solution:
x - y = 6, ==> x = 6 + y
x y = 8, ==> (6+y)y = 8,==> 6y + y 2 =8, ==> y 2 + 6y = 8
y 2 + 6y + 9 = 8 + 9, ==> y 2 + 6y + 9 = 17
y 2 + 6y + 9 = 17 , ==> (y + 3) 2 = 17, ==> y + 3 = ±17−−√ , ==>
y = ±17−−√ -3
xy = 8
x = 8y , ==> 8±17√−3 , ==> 3±17−−√
x 2 + y 2 = ?
(3−17−−√)2+(−3−17−−√)2=52
(3+17−−√)2+(−3+17−−√)2=52
Answer is: 52
Question : Find the value of x² + y², if x + y = 6 and xy = 8
Given : x + y = 6 and xy = 8
To Find : Value of x² + y²
Answer : x² + y² = 20
____________________________________________________
- We need to use an algebraic identify to solve this question and that identify will (a + b)² = a² + b² + 2ab
Process to Solve :
First We Take x and y in place of a and b in the algebraic identify used , Then we expand it and substitute the values which are given. Transposing the constants leave us with x² + y², and Finally we can find the value !!!
____________________________________________________
- Take x and y in place of a and b in (a + b)² = a² + b² + 2ab
⇒ (x + y)² = x² + y² + 2xy
- Substitute the value of x + y
⇒ (6)² = x² + y² + 2xy
⇒ 36 = x² + y² + 2xy
- Substitute the Value of xy
⇒ 36 = x² + y² + 2(8)
⇒ 36 = x² + y² + 16
⇒ 36 - 16 = x² + y²
⇒ 20 = x² + y²
- Switch Sides