Math, asked by askk9173, 1 year ago

Find the value {x/y}^(√79+√77) ]^(√79-√77)

Answers

Answered by amitnrw
1

{x/y}^(√79+√77) ]^(√79-√77)  = (x/y)²

Step-by-step explanation:

{x/y}^(√79+√77) ]^(√79-√77)

as we know that

(a^p)^q  =  a^pq

=> {x/y}^(√79+√77) ]^(√79-√77)

=  {x/y}^(√79+√77) (√79-√77) )

= (x/y)⁽⁷⁹⁻⁷⁷⁾

= (x/y)²

{x/y}^(√79+√77) ]^(√79-√77)  = (x/y)²

Learn more:

If 52272 = p²×q³×r⁴ where p, q and r are prime numbers, then the ...

https://brainly.in/question/11068669

Answered by isyllus
1

\left(\left(\dfrac{x}{y}\right)^{\left(\sqrt{79}+\sqrt{77}\right)}\right)^{\left(\sqrt{79}-\sqrt{77}\right)}=\dfrac{x^2}{y^2}

Step-by-step explanation:

Given: \left(\left(\dfrac{x}{y}\right)^{\left(\sqrt{79}+\sqrt{77}\right)}\right)^{\left(\sqrt{79}-\sqrt{77}\right)}

Using exponent law: -

(a^m)^n=a^{mn}

\Rightarrow \left(\dfrac{x}{y}\right)^{(\sqrt{79}+\sqrt{77})(\sqrt{79}-\sqrt{77})}

Using difference of square formula:-

(a+b)(a-b)=a^2-b^2

\Rightarrow \left(\dfrac{x}{y}\right)^{(\sqrt{79})^2-(\sqrt{77})^2}

cancel square root with square

\Rightarrow \left(\dfrac{x}{y}\right)^{79-77}

\Rightarrow \left(\dfrac{x}{y}\right)^{2}

\Rightarrow \dfrac{x^2}{y^2}

Hence, the simplest form: \Rightarrow \dfrac{x^2}{y^2}

#Learn more:

https://brainly.in/question/13612353

Similar questions