Math, asked by rameshjane28, 6 months ago

find the valueof a and b √3-1/√3+1 =a+b√3​

Answers

Answered by Anonymous
1

Solution:-

Given

 \rm \implies \:  \dfrac{ \sqrt{3} - 1 }{ \sqrt{3}  + 1}  = a + b \sqrt{3}

To find

 \rm \implies \: \: value \:  \:  a  \: \: and \: \:  b

Now take

 \rm \implies \:  \dfrac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 }  \times  \dfrac{ \sqrt{3}  - 1}{ \sqrt{3}  - 1}

 \rm \implies \:  \dfrac{( \sqrt{3} - 1) {}^{2}  }{( \sqrt{3} + 1)( \sqrt{3}   - 1)}

Use this two identities

 \rm \implies \: (a - b) {}^{2}  =  {a}^{2}   +  {b}^{2}  - 2ab

 \rm \implies \: (a -  b)(a + b) =  {a}^{2}  -  {b}^{2}

Now we use

 \rm \implies \:  \dfrac{( \sqrt{3} ) {}^{2} +  {1}^{2}   - 2 \sqrt{3} }{( \sqrt{3}) {}^{2}  -  {1}^{2}  }

 \rm \implies \:  \dfrac{3 + 1 - 2 \sqrt{3} }{2}

 \rm \implies \:  \dfrac{4 - 2 \sqrt{3} }{2}

 \rm \implies \:  \dfrac{2(2 -  \sqrt{3}) }{2}  \implies \: 2 -  \sqrt{3}

Now compare with

  \rm\implies \: a + b \sqrt{3}

We get the value of a = 2 and b = - 1

Similar questions