Find the valueof A for√3sinA-cosA=0
Answers
Answered by
32
√3sinA - cosA = 0
√3sinA = cosA
sinA = 1/√3cosA
sinA/cosA = 1/√3
tanA = 1/√3
we know , tan30° = 1/√3
so,
tanA = tan30°
A = nπ + π/6
hence, smallest value of A = π/6 ( or 30°)
√3sinA = cosA
sinA = 1/√3cosA
sinA/cosA = 1/√3
tanA = 1/√3
we know , tan30° = 1/√3
so,
tanA = tan30°
A = nπ + π/6
hence, smallest value of A = π/6 ( or 30°)
Answered by
7
Hi friend!!!
√3sinA-cosA=0
divide with 2 on both sides
√3/2*sinA-1/2*cosA=0
cos30sinA-sin30cosA=0
sin(A-30)=0
A-30=nπ
A=nπ+π/6
I hope this will help u ;)
√3sinA-cosA=0
divide with 2 on both sides
√3/2*sinA-1/2*cosA=0
cos30sinA-sin30cosA=0
sin(A-30)=0
A-30=nπ
A=nπ+π/6
I hope this will help u ;)
Similar questions