Math, asked by Anonymous, 1 month ago

Find the values of:
(1) sina 60° - cos2 45° + 3 tan2 30°​​

Answers

Answered by Anonymous
97

Answer:

Given :-

  • Find the value of:
  • sin \:  {60}^{0}  -  {cos}^{2}  {45}^{0}  + 3 {tan}^{2}  {30}^{0}

To prove :-

  • We should find trigonometric equation values.

Explanation :-

  • We know that,

Trigonometric identities: -

  • sin {60}^{0}  =  \frac{ \sqrt{3} }{ \:  \:  \: 2}

  • cos {45}^{0}  =  \frac{1}{ \sqrt{2} }

  • tan {30}^{0 }  =  \frac{1}{ \sqrt{3} }

Now,

  • Applying the given values we get that,

  •  \frac{ \sqrt{ {(3)}^{2} } }{ {2}^{2} }  -  \frac{1}{ \sqrt{ {2}^{2} } }  + 3 \times  \frac{1}{ \sqrt{ {3}^{2} } }

  •   = \frac{3}{4}  +  \frac{1}{2}

  •  =  \frac{5}{4}

Therefore,

  • The value of trigonometric equation we is 5/4.

Hope it helps you.

Thank you ..

Answered by mathdude500
21

Appropriate Question

Find the value of

\rm :\longmapsto\: {sin}^{2}60 \degree \:  -  \:  {cos}^{2}45\degree \:  + \:  3 {tan}^{2}60\degree

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\: {sin}^{2}60 \degree \:  -  \:  {cos}^{2}45\degree \:  + \:  3 {tan}^{2}60\degree

We know that,

\boxed{ \bf{ \:sin60\degree =  \frac{ \sqrt{3} }{2}}}

\boxed{ \bf{ \:cos45\degree =  \frac{1}{ \sqrt{2} }}}

and

\boxed{ \bf{ \:tan30\degree =  \frac{1}{ \sqrt{3} }}}

So, on substituting the values, we get

\rm \:  =  \:  {\bigg[\dfrac{ \sqrt{3} }{2} \bigg]}^{2} - {\bigg[\dfrac{1}{ \sqrt{2} } \bigg]}^{2} + 3{\bigg[\dfrac{1}{ \sqrt{3} } \bigg]}^{2}

\rm \:  =  \: \dfrac{3}{4}  - \dfrac{1}{2}  + 3 \times \dfrac{1}{3}

\rm \:  =  \: \dfrac{3}{4}  - \dfrac{1}{2}  + 1

\rm \:  =  \: \dfrac{3 - 2 + 4}{4}

\rm \:  =  \: \dfrac{1 + 4}{4}

\rm \:  =  \: \dfrac{5}{4}

Hence,

\rm :\longmapsto\:\boxed{ \bf{ \: {sin}^{2}60 \degree \:  -  \:  {cos}^{2}45\degree \:  + \:  3 {tan}^{2}60\degree =  \frac{5}{4} }}

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions