Math, asked by idk8178, 1 year ago

find the values of a and b are vertices of a parallelogram (-8,10), (2,8), (a,3) and (4,b) taken in order.
With full explanation
Correct answer will be the brainiest answer​

Answers

Answered by KINGofDEVIL
46

 \huge{  \blue{\underline{ \overline{ \boxed{ \orange{ \mathbb{ANSWER}}}}}}}

Let ABCD be a parellogram whose vertices (-8,10), (2,8), (a,3) and (4,b) are taken in order.

TO FIND :

Values of 'a' and 'b'

SOLUTION :

Let A = (-8,10), B = (2,8), C = (a,3) and D = (4,b).

Let A = (-8,10), B = (2,8), C = (a,3) and D = (4,b).Let D(x,y) be the point of intersection of the diagonals of the parellogram.

Now, we know that the diagonals of parellogram bisect each other.

Now, from diagonal AC, D(x,y) is the mid point of AC.

 \therefore \:  \sf \: D(x,y)  = ( \frac{ x_1 \:  + \:   x_3}{2} , \:  \frac{ y_1 \:  +  \:  y_3}{2} )

  \sf \: D(x,y)  = ( \frac{ - 8 \:  + \:  a}{2} , \:  \frac{10 \:  +  \: 3}{2} ) \:  \:  \:  \:  \:  \:  \rightarrow \: (1)

Also, from diagonal BD, D(x,y) is the mid point of BD.

 \therefore \:  \sf \: D(x,y)  = ( \frac{ x_2 \:  + \:   x_4}{2} , \:  \frac{ y_2 \:  +  \:  y_4}{2} )

\sf \: D(x,y)  = ( \frac{ 4 \:  + \:  2}{2} , \:  \frac{b \:  +  \: 8}{2} ) \:  \:  \:  \:  \:  \:  \rightarrow \: (2)

Now, from (1) and (2) we get,

 \implies \:    ( \frac{ - 8 \:  + \:  a}{2} , \:  \frac{10 \:  +  \: 3}{2} )  = \: ( \frac{ 4 \:  + \:  2}{2} , \:  \frac{b \:  +  \: 8}{2} )

On comparing we get,

 \implies \:   \sf{   \frac{ - 8 \:  + \:  a}{2}  \: = \frac{ 4 \:  + \:  2}{2} \:  \:  \:  and \:  \:  \:    \:  \frac{b \:  +  \: 8}{2} \:  = \:  \frac{10 \:  +  \: 3}{2} }

\implies \:   \sf{ { - 8  + a} \: = { 4 + 2}\:  \:  \:  \:  and  \: \:  \:  \:    \:  {b + 8}  =  {10 + 3} }

\implies \:   \sf{ a \: = 14\:  \:  \:  \:  and  \: \:  \:  \:    \:  b  = 5 }

  \boxed{ \:  \sf \green{ Required \:  numbers \: are :  \:   a \: = 14  \:  \:  \:  and  \: \: \: b  = 5  \: }}

#answerwithquality #BAL

Attachments:
Similar questions