Math, asked by suresh3028, 6 months ago

Find the values of a and b for which the system of equations has infinitely many

solutions

3x(a + 1)y = 2b - 1 and 5x + (1 - 2a)y = 3b​

Answers

Answered by MaIeficent
16

Step-by-step explanation:

Correct Equations:-

3x - (a + 1)y = 2b - 1 and 5x + (1 - 2a)y = 3b

Given:-

  • Two equations:-

  1. 3x - (a + 1)y = 2b - 1
  2. 5x + (1 - 2a)y = 3b

To Find:-

  • The values of a and b

Concept used:-

Suppose we have two equations in two variables

 \bull \sf  \: a_{1}x +  b_{1}y  =  c_{1} \\  \bull \sf \:  a_{2}x +  b_{2}y  =  c_{2}

Given two equations have infinitely many solutions only if:-

 \boxed{\sf \leadsto  \dfrac{a_{1}}{a_{2}} = \dfrac{b_{1}}{b_{2}} = \dfrac{c_{1}}{c_{2}}}

Solution:-

 \sf  3x - (a + 1)y = 2b - 1   \:  \:  \:  \:  \:  \:  \:  \:  \big[a_{1} = 3 \: , \: b_{1} =  - (a + 1) \: , \:   c_{1}  = 2b - 1 \big]

 \sf  5x + (1 - 2a)y = 3b \:  \:  \:  \:  \:  \:  \:  \:  \big[a_{2} = 5 \: , \: b_{2} =  1 - 2a\: , \:   c_{1}  = 3b \big]

Since, the two equations has infinitely many solutions.

 \sf \implies\dfrac{3}{5} = \dfrac{ - (a + 1)}{1 - 2a} = \dfrac{2b - 1}{3b}

\:

 \sf \dfrac{3}{5} = \dfrac{ - (a + 1)}{1 - 2a} \: \:(and) \: \:  \dfrac{3}{5} = \dfrac{2b - 1}{3b}

\:

 \sf \implies\dfrac{3}{5} = \dfrac{ - (a + 1)}{1 - 2a}

 \sf \implies3(1 - 2a)= -5 (a + 1)

 \sf \implies3 - 6a= -5a  - 5

 \sf \implies6a - 5a= 5 + 3

 \sf \implies  \underline{ \:  \:  \underline{ \: a = 8 \: } \:  \: }

Now:-

 \sf\implies  \dfrac{3}{5} = \dfrac{2b - 1}{3b}

 \sf\implies  3(3b)= 5(2b - 1)

 \sf\implies 9b= 10b - 5

 \sf\implies 10b - 9b =  5

 \sf \implies  \underline{ \:  \:  \underline{ \: b = 5\: } \:  \: }

\large\underline{\boxed{\therefore \textsf{\textbf{ a = 8 \: \: , \: \: b = 5}}}}

Answered by Anonymous
8

\huge{\boxed{\rm{Correct \: question}}}

Find the values of a and b for which the system of equations has infinitely many solutions →

  • 3x - (a + 1)y = 2b - 1 and 5x + (1 - 2a)y = 3b

\huge{\boxed{\rm{Answer}}}

\large{\boxed{\boxed{\sf{Given \: that}}}}

Both equations are given below

  • 3x - (a + 1)y = 2b - 1

  • 5x + (1 - 2a)y = 3b

\large{\boxed{\boxed{\sf{To \: find}}}}

  • The value of a and b.

\large{\boxed{\boxed{\sf{Solution}}}}

  • Value of a = 8

  • Value of b = 5

\large{\boxed{\boxed{\sf{Using \: formula \: or \: concept}}}}

Let we have 2 equations in 2 variables

➸ ᵃ1ˣ = ᵇ1ʸ = ᶜ1

➸ ᵃ2ˣ = ᵇ2ʸ = ᶜ2

Now,

ᵃ1 / ᵃ2 = ᵇ1 / ᵇ2 = ᶜ1 / ᶜ2

\large{\boxed{\boxed{\sf{What \: does \: the \: question \: says}}}}

\large{\boxed{\boxed{\sf{Let's \: understand \: the \: concept \: now}}}}

  • This question have equation 3x - (a + 1)y = 2b - 1 and 5x + (1 - 2a)y = 3b in these equations we have to find the value of a and b.

\large{\boxed{\boxed{\sf{How \: to \: do \: this \: question}}}}

\large{\boxed{\boxed{\sf{Let's \: see \: the \: procedure \: now}}}}

  • To solve this question we have to use formula afterthat putting the values we get the value of a that is 8 afterthat substituting the value we get value of b as 5.

\large{\boxed{\boxed{\sf{Full \: solution}}}}

3x - (a + 1)y = 2b - 1

Where the values are

  • ᵃ1 = 3

  • ᵇ1 = -a+1

  • ᶜ1 = 2b - 1

5x + (1-2a)y = 3b

Where the values are

  • ᵃ1 = 5

  • ᵇ2 = 1

  • ᶜ2 = 3b

Since, both of the solutions have infinite solutions .

  • 3/5 = (-a+1) / (1-2a) and 3/5 = 2b - 1 / 3b.

  • 3/5 = (-a+1) / (1-2a) and 3/5 = 2b - 1 / 3b.

  • 3/5 = (-a+1) / (1-2a).

Cross multiplying the digits we get

  • 3/5(1-2a) = -5(a+1)

  • 3-6a = -5a - 5

Placing like terms we get

  • 6a - 5a = 5 + 3

  • 1a = 8

  • a = 8

Hence, value of a = 8

Now,

  • 3/5 = 2b-1 / 3b

Cross multiplying the digits we get

  • 3(3b) = 5(2b-1)

  • 9b = 10b - 5

  • 10b - 9b = 5

  • 1b = 5

  • b = 5

Hence, value of b = 5

Similar questions