Math, asked by jackup6083, 9 months ago

Find the values of a and b if 16x4 - 24x3 + (a-1)x2 + (b+!)x +49 is a perfect square.

Answers

Answered by jmsingh1963
0

Answer:

It is given that the polynomial 16x

4

−24x

3

+41x

2

−mx+16 to be a perfect square, therefore, we have:

16x

4

−24x

3

+41x

2

−mx+16=(ax

2

+bx+c)

2

⇒16x

4

−24x

3

+41x

2

−mx+16=a

2

x

4

+b

2

x

2

+c

2

+2abx

3

+2cax

2

+2bcx

(∵(a+b+c)

2

=a

2

+b

2

+c

2

+2ab+2bc+2ca)

⇒16x

4

−24x

3

+41x

2

−mx+16=a

2

x

4

+2abx

3

+(2ca+b

2

)x

2

+2bcx+c

2

Comparing the coefficient of x on both sides, we get

a

2

=16⇒a=4

c

2

=16⇒c=4

2ab=−24

⇒2×4×b=−24

⇒8b=−24

⇒b=−

8

24

⇒b=−3

2bc=−m

⇒2×−3×4=−m

⇒−24=−m

⇒m=24

Similar questions