Math, asked by mayanshigupta30, 2 months ago

Find the values of a and b if
√2+√3/3√2-2√3
= a-b√6​

Answers

Answered by JMOHAMMEDSHEIK
0

Answer:

please select my answer as brainilist answer please the value is 2',22

Answered by Salmonpanna2022
2

Step-by-step explanation:

Question:-

 \mathrm{Find \:  the values  \: of \:  a  \: and  \: b  \: if : } \\

 \frac{ \sqrt{2}  +  \sqrt{3} }{3 \sqrt{2}  - 2 \sqrt{3} }  =  \mathrm{a - b \sqrt{6} } \\  \\

Solution:-

 \frac{ \sqrt{2}  +  \sqrt{3} }{3 \sqrt{2}  - 2 \sqrt{3} }  =  \mathrm{a - b \sqrt{6} } \\

The denominator is 3√2-2√3. Multiplying the numerator and denomination by 3√2+2√3, we get

⟹ \frac{ \sqrt{2} +  \sqrt{3}  }{3 \sqrt{2} - 2 \sqrt{ 3 }  }  \times  \frac{3 \sqrt{2}   +  2 \sqrt{3} }{3 \sqrt{2} + 2 \sqrt{3}  }  \\  \\

⟹ \frac{( \sqrt{2}  +  \sqrt{3} )(3 \sqrt{2}  + 2 \sqrt{3} )}{(3 \sqrt{2}  - 2 \sqrt{3})(3 \sqrt{2}  + 2 \sqrt{3} ) }  \\

  1. We multiplying numerator left side to right side
  2. ⬤ Applying Algebraic Identity

  • (a-b)(a+b) = a² - b² to the denominator

We get,

⟹ \frac{3 \sqrt{2 \times 2} + 2 \sqrt{3 \times 2}   + 3 \sqrt{2 \times 3} + 2 \sqrt{3 \times 3}  }{(3 \sqrt{2} {)}^{2}  - (2 \sqrt{3}  {)}^{2}  }  \\  \\

⟹ \frac{3 \times 2 + 2 \sqrt{6}  + 3 \sqrt{6} + 2 \times 3 }{18 - 12}  \\  \\

⟹ \frac{12 + 5 \sqrt{6} }{6}  \\  \\

⟹2 +  \frac{5}{6}  \sqrt{6}  \\  \\

 \mathrm{∴ \: a - b \sqrt{6}  = 2 +  \frac{5}{6} \sqrt{6} }  \\  \\

On comparing:

 \mathrm{The  \: value \:  of \: a = 2 \: and \: b =  -  \frac{5}{6} } \\  \\

Answer:-

 \mathrm{The  \: value \:  of \: a = 2 \: and \: b =  -  \frac{5}{6} } \\  \\

Used formulae:-

  • (a-b)(a+b) = a² - b².

:)

Similar questions