Math, asked by prakashjaiswal9378, 2 months ago

find the values of a and b if 3/(3+2root2) + 2/(3-2root2) = a+b root 2....explain​

Answers

Answered by mathdude500
3

\large\underline{\sf{Given- }}

\rm :\longmapsto\:\dfrac{3}{3 + 2 \sqrt{2} }  + \dfrac{2}{3 - 2 \sqrt{2} }  = a + b \sqrt{2}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:a \: and \: b

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\dfrac{3}{3 + 2 \sqrt{2} }  + \dfrac{2}{3 - 2 \sqrt{2} }  = a + b \sqrt{2} -  - (1)

Consider,

 \blue{\bf :\longmapsto\:\dfrac{3}{3 + 2 \sqrt{2} }}

On rationalizing the denominator, we get

 \rm \:  =  \:  \: \dfrac{3}{3 + 2 \sqrt{2} } \times \dfrac{3 - 2 \sqrt{2} }{3 - 2 \sqrt{2} }

 \rm \:  =  \:  \: \dfrac{9 - 6 \sqrt{2} }{ {(3)}^{2} -  {(2 \sqrt{2}) }^{2}  }

 \rm \:  =  \:  \: \dfrac{9 - 6 \sqrt{2} }{9 - 8}

 \rm \:  =  \:  \: \dfrac{9 - 6 \sqrt{2} }{1}

 \rm \:  =  \:  \: 9 - 6 \sqrt{2}

 \blue{\bf\implies \:\dfrac{3}{3 + 2 \sqrt{2} } = 9 - 6 \sqrt{2}} -  -  - (2)

Consider,

 \red{\bf :\longmapsto\:\dfrac{2}{3  -  2 \sqrt{2} }}

On rationalizing the denominator, we get

 \rm \:  =  \:  \: \dfrac{2}{3 - 2 \sqrt{2} }  \times \dfrac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }

 \rm \:  =  \:  \: \dfrac{6 + 4 \sqrt{2} }{ {(3)}^{2}  -  {(2 \sqrt{2} )}^{2} }

 \rm \:  =  \:  \: \dfrac{6 + 4 \sqrt{2} }{9 - 8}

 \rm \:  =  \:  \: \dfrac{6 + 4\sqrt{2} }{1}

 \rm \:  =  \:  \: 6 + 4 \sqrt{2}

 \red{\bf :\longmapsto\:\dfrac{2}{3  -  2 \sqrt{2} } = 6 + 4 \sqrt{2} } -  -  - (3)

Consider,

\bf :\longmapsto\:\dfrac{3}{3 + 2 \sqrt{2} }  + \dfrac{2}{3 - 2 \sqrt{2} }  = a + b \sqrt{2}

On substituting the value from equation (2) and (3), we get

\rm :\longmapsto\:9 - 6 \sqrt{2}  + 6 + 4 \sqrt{2}  = a + b \sqrt{2}

\bf :\longmapsto\: \red{15} \:  -  \:  \blue{5 \sqrt{2}} \: =  \:  \red{a} \:  + \:  \blue{ b \sqrt{2} }

On comparing, we get

\bf :\longmapsto\:a = 15 \:  \:  \:  \: and \:  \:  \:  \:  \: b =  -  \: 5

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Answered by emma3006
0

Answer:

a = 15

b = -2

Step-by-step explanation:

Given:

\sf{\dfrac{3}{3 + 2\sqrt{2}} + \dfrac{2}{3 - 2\sqrt{2}} = a+b\sqrt{2}}

To find:

The values of a and b.

Solution:

\sf{\dfrac{3}{3 + 2\sqrt{2}} + \dfrac{2}{3 - 2\sqrt{2}} = a+b\sqrt{2}}

\implies \sf{\dfrac{3(3 - 2\sqrt{2}) + 2(3 + 2\sqrt{2})}{(3 + 2\sqrt{2})(3 - 2\sqrt{2})}} = a+b\sqrt{2}}

\implies \sf{\dfrac{(9 - 6\sqrt{2}) + (6 + 4\sqrt{2})}{(3)^2 - (2\sqrt{2})^2} = a+b\sqrt{2}}

\implies \sf{\dfrac{9 - 6\sqrt{2} + 6 + 4\sqrt{2}}{9 - 8} = a+b\sqrt{2}}

\implies \sf{\dfrac{15 - 2\sqrt{2}}{1} = a+b\sqrt{2}}

\implies \sf{15 - 2\sqrt{2} = a+b\sqrt{2}}

Comparing LHS and RHS, we get

a = 15

b = -2

Similar questions