Math, asked by dbhd, 11 months ago

Find the values of a and b if 5+2√3/7+4√3=a+b√3

Answers

Answered by neha35866
2

Answer:

hey mate here is u r answer

Step-by-step explanation:

hope it helps uh

plz mark me as brainlist plz

and sry for late

Attachments:
Answered by Rohit18Bhadauria
4

Given:

\bf{\dfrac{5+2\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}}

To Find:

Values of a and b

Solution:

We know that,

\longrightarrow\bf{(x+y)(x-y)=x^{2}-y^{2}}

It is given that,

\longrightarrow\mathrm{\dfrac{5+2\sqrt{3}}{7+4\sqrt{3}}=a+b\sqrt{3}}

On multiplying and dividing 7-4√3 in L.H.S., we get

\longrightarrow\mathrm{\dfrac{5+2\sqrt{3}}{7+4\sqrt{3}}\times\dfrac{7-4\sqrt{3}}{7-4\sqrt{3}} =a+b\sqrt{3}}

\longrightarrow\mathrm{\dfrac{(5+2\sqrt{3})(7-4\sqrt{3})}{(7)^{2}-(4\sqrt{3})^{2}} =a+b\sqrt{3}}

\longrightarrow\sf{\dfrac{5(7-4\sqrt{3})+2\sqrt{3}(7-4\sqrt{3})}{49-48} =a+b\sqrt{3}}

\longrightarrow\sf{\dfrac{35-20\sqrt{3}+14\sqrt{3}-24}{1} =a+b\sqrt{3}}

\longrightarrow\sf{35-24-20\sqrt{3}+14\sqrt{3}=a+b\sqrt{3}}

\longrightarrow\sf{11-6\sqrt{3} =a+b\sqrt{3}}

On comparing the constant term and coefficient of √3 of both the sides, we get

\longrightarrow\mathrm{\pink{a=11}}

\longrightarrow\mathrm{\green{b=-6}}

Hence, the value of a is 11 and bis -6.

Similar questions