Math, asked by Zerina313121, 4 months ago

Find the values of a and b if

 { \frac{ \sqrt{7} - 1 }{ \sqrt{7} + 1} - \frac{ \sqrt{7} + 1}{\sqrt{7} - 1} = a + b \sqrt{7} }

Answers

Answered by Anonymous
4

Answer:

a = 0 \\  \\ b =  \frac{ - 4}{6}

Step-by-step explanation:

 \frac{ \sqrt{7}  - 1}{ \sqrt{7} + 1 }   -  \frac{ \sqrt{7} + 1 }{ \sqrt{7}  - 1}  = a + b \sqrt{7}  \\  \\  =  \frac{ \sqrt{7}  - 1}{ \sqrt{7}  + 1}  \times  \frac{ \sqrt{7}  - 1}{ \sqrt{7}  - 1}  \\  \\  =  \frac{ (\sqrt{7} + 1)  {}^{2} }{( \sqrt{7}   -  1)( \sqrt{7} - 1) }  \\  \\  =  \frac{( \sqrt{7} ) {}^{2} + ( {1)}^{2}  - 2( \sqrt{7}   \times 1)}{( \sqrt{7} {)}^{2} - ( {1)}^{2}   }  \\  \\  =  \frac{7 + 1 - 2 \sqrt{7} }{7 - 1}  \\  \\  =  \frac{8 - 2 \sqrt{7} }{6}

 \frac{ \sqrt{7}  + 1}{ \sqrt{7}  - 1}  \times  \frac{ \sqrt{7}  + 1}{ \sqrt{7} + 1 }  \\  \\  =  \frac{( \sqrt{7} + 1 {)}^{2}  }{( \sqrt{7}  + 1)( \sqrt{7} - 1) }  \\  \\  =  \frac{ (\sqrt{7}  {)}^{2} + ( {1)}^{2}  + 2( \sqrt{7})  }{7 - 1}  \\  \\  =  \frac{8 + 2 \sqrt{7} }{6}

 \frac{8 - 2 \sqrt{7} }{6}  -  \frac{8 + 2 \sqrt{7} }{6}  \\  \\  =  \frac{8 - 2 \sqrt{7}  - 8 - 2 \sqrt{7} }{6}  \\  \\  =  \frac{ - 4 \sqrt{7} }{6}  \\  \\

a = 0 \\  \\ b =  \frac{ - 4}{6}

Attachments:
Answered by Salmonpanna2022
5

Answer:

The value of a = 0 and b =- $\frac{2}{3}$

Step-by-step explanation:

Given that:

 \frac{ \sqrt{7} - 1 }{ \sqrt{7} + 1 }  -  \frac{ \sqrt{7}  + 1}{ \sqrt{7}  - 1}  = a + b \sqrt{7}  \\  \\

To find:

The value of a and b.

Solution:

 \frac{ \sqrt{7} - 1 }{ \sqrt{7} + 1 }  -  \frac{ \sqrt{7}  + 1}{ \sqrt{7}  - 1}   \\  \\

Rationalising the denominator, we get

 \longrightarrow \:  \frac{ \sqrt{7}  - 1}{ \sqrt{7} + 1 }  \times  \frac{ \sqrt{7}  - 1}{ \sqrt{7}  - 1}  -  \frac{ \sqrt{7} + 1 }{ \sqrt{7} - 1 }  \times  \frac{ \sqrt{7} + 1 }{ \sqrt{7} + 1 }  \\  \\

 \longrightarrow \:  \frac{( \sqrt{7}  - 1 {)}^{2} }{( \sqrt{7} + 1)( \sqrt{7} - 1  }  -  \frac{( \sqrt{7}  + 1 {)}^{2} }{( \sqrt{7}  - 1( \sqrt{7} + 1) }  \\  \\

 \longrightarrow \:  \frac{7 + 1 - 2 \sqrt{7} }{( \sqrt{7} {)}^{2}  -  {1}^{2}  }  -  \frac{7 + 1 + 2 \sqrt{7} }{( \sqrt{7}  {)}^{2}  -  {1}^{2} }  \\  \\

 \longrightarrow \:  \frac{8 - 2 \sqrt{7} }{7 - 1}  -  \frac{8 + 2 \sqrt{7} }{7 - 1}  \\  \\

 \longrightarrow \:  \frac{1}{6} (8 - 2 \sqrt{7}  - 8 - 2 \sqrt{7} ) \\  \\

 \longrightarrow \: 0 -  \frac{4 \sqrt{7} }{6}  \\  \\

 \longrightarrow \: 0 + ( \frac{ - 2}{3} ) \sqrt{7}  \\  \\

∴ \: 0 +   (\frac{ - 2}{3} ) = a + b \sqrt{7}  \\  \\

 \longrightarrow \:  a = 0 \:  \: and \:  \: b = -   \frac{2}{3}  \\

According to the question we find a = 0 and b = -$\frac{2}{3}$

Similar questions