Math, asked by Zerina313121, 1 month ago

Find the values of a and b if

 { \frac{ \sqrt{7} - 1 }{ \sqrt{7} + 1} - \frac{ \sqrt{7} + 1}{\sqrt{7} - 1} = a + b \sqrt{7} }

Answers

Answered by mathdude500
5

Basic Concept Used :-

Concept of Rationalization :-

To multiply and divide the numerator and denominator of the fraction by opposite sign in denominator to remove the radicals from denominator.

Let's solve the problem now!!

Consider

\rm :\longmapsto\:\dfrac{ \sqrt{7} - 1 }{ \sqrt{7}  + 1}

On rationalizing the denominator, we get

 \:  \sf \:  \:  =  \:  \: \:\dfrac{ \sqrt{7} - 1 }{ \sqrt{7}  + 1} \times \dfrac{ \sqrt{7} - 1 }{ \sqrt{7} - 1 }

 \:  \sf \:  \:  =  \:  \: \dfrac{ {( \sqrt{7} - 1) }^{2} }{ {( \sqrt{7}) }^{2} -  {(1)}^{2}  }

 \:  \sf \:  \:  =  \:  \: \dfrac{7 + 1 - 2 \sqrt{7} }{7 - 1}

\boxed{\red{\sf\because\:{(x - y)}^{2}= {x}^{2} +{y}^{2} -2xy\:and\:(x + y)(x - y)={x}^{2} -  {y}^{2}}}

 \:  \sf \:  \:  =  \:  \: \dfrac{8 - 2 \sqrt{7} }{6}

 \:  \sf \:  \:  =  \:  \: \dfrac{4 -\sqrt{7} }{3}

\bf\implies \:\boxed{\red{\sf\:\dfrac{ \sqrt{7}  - 1}{ \sqrt{7} + 1} = \dfrac{4 -  \sqrt{7} }{3}}}   -  -  - (1)

Now,

Consider,

\rm :\longmapsto\:\dfrac{ \sqrt{7}  + 1 }{ \sqrt{7} -  1}

On rationalizing the denominator, we get

 \:  \sf \:  \:  =  \:  \: \:\dfrac{ \sqrt{7}  +  1 }{ \sqrt{7}   -  1} \times \dfrac{ \sqrt{7}  +  1 }{ \sqrt{7}  +  1 }

 \:  \sf \:  \:  =  \:  \: \dfrac{ {( \sqrt{7}  +  1) }^{2} }{ {( \sqrt{7}) }^{2} -  {(1)}^{2}  }

 \:  \sf \:  \:  =  \:  \: \dfrac{7 + 1  +  2 \sqrt{7} }{7 - 1}

\boxed{\red{\sf\because\:{(x+y)}^{2}= {x}^{2} +{y}^{2}+2xy\:and\:(x + y)(x - y)={x}^{2} -  {y}^{2}}}

 \:  \sf \:  \:  =  \:  \: \dfrac{8  +  2 \sqrt{7} }{6}

 \:  \sf \:  \:  =  \:  \: \dfrac{4+\sqrt{7} }{3}

\bf\implies \:\boxed{\red{\sf\:\dfrac{ \sqrt{7} + 1}{ \sqrt{7} - 1} = \dfrac{4 + \sqrt{7} }{3}}} -  -  -  - (2)

Now,

According to statement,

\rm :\longmapsto\:\dfrac{ \sqrt{7}  - 1}{ \sqrt{7}  + 1}  - \dfrac{ \sqrt{7}  + 1}{ \sqrt{7}  - 1}  = a + b \sqrt{7}

On substituting the values from equation (1) and (2), we get

\rm :\longmapsto\:\dfrac{4 -  \sqrt{7} }{3}  - \dfrac{4 +  \sqrt{7} }{3}  = a + b \sqrt{7}

\rm :\longmapsto\:\dfrac{ \cancel4 -  \sqrt{7}  -  \cancel4 -  \sqrt{7} }{3}=a + b \sqrt{7}

\rm :\longmapsto\:\dfrac{  -  \sqrt{7}  -   \sqrt{7} }{3}=a + b \sqrt{7}

\rm :\longmapsto\:\dfrac{  -2\sqrt{7}}{3}=a + b \sqrt{7}

So, on comparing, we get

\rm :\longmapsto\:a = 0 \:  \:  \:  \: and \:  \:  \:  \: b \:  =  - \dfrac{2}{3}

More Identities to know :-

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)
Similar questions