Math, asked by bananimishra24, 7 months ago

Find the values of a and b in( 5+2√3)/(7+4√3)= a+b√3​

Answers

Answered by harry1579
0

Step-by-step explanation:

by rationalising their denominator

a=11

b= -6

Answered by anindyaadhikari13
3

 \frac{5 + 2 \sqrt{3}  }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}

Or,

 \frac{(5 + 2 \sqrt{3})(7 - 4 \sqrt{3})}{(7 + 4 \sqrt{3} )(7 - 4 \sqrt{3}) }  = a + b  \sqrt{3}

Or,

 \frac{5(7 - 4 \sqrt{3}) + 2 \sqrt{3}(7 - 4 \sqrt{3}) }{(7)^{2} - (4 \sqrt{3})^{2}  }  = a + b \sqrt{3}

Or,

 \frac{35 - 20 \sqrt{3}  + 14 \sqrt{3}  - 24}{49 - 48}  = a + b \sqrt{3}

Or,

35 - 24 - 20 \sqrt{3}  + 14 \sqrt{3}  = a + b \sqrt{3}

Or,

11 - 6 \sqrt{3}  = a + b \sqrt{3}

Comparing both side, we get,

a = 11

b =  - 6

<marquee>Hope it helps you... please mark this answer as the brainliest and follow me... </marquee>

Similar questions