Math, asked by barodilip64, 8 months ago

Find the values of a and b in the following
 \frac{7 +  \sqrt{ 5} }{7 -  \sqrt{5} }  -  \frac{7 -  \sqrt{5} }{7 +  \sqrt{5} }  = a +  \frac{7}{11}  \sqrt{5}  \: b

Answers

Answered by shaikhfarhan4728
27

*Solution* :-

Step-by-step explanation:

★Question

 \\ \frac{7 +  \sqrt{5}  }{7 -  \sqrt{5} }  -  \frac{7 -  \sqrt{5} }{7 +  \sqrt{5} }

--------------------------------------------------------

†Answer†

 \ \frac{7 +  \sqrt{5} }{7 -  \sqrt{5} }  -  \frac{7 -  \sqrt{5} }{7 +  \sqrt{5} }

Rationalising the denominator, we get

  \frac{7 +  \sqrt{5} }{7 -  \sqrt{5} }  \times  \frac{7 +  \sqrt{5} }{7 +  \sqrt{5} }  -  \frac{7 -  \sqrt{5 } }{7 +  \sqrt{5 } }  \times   \frac{7 -  \sqrt{5} }{7 -  \sqrt{5} }

 = \frac{(7 +  \sqrt{5) ^{2} } }{7  ^{2} - ( \sqrt{5) ^{2} }   }  - \frac{(7 -  \sqrt{5) ^{2} } }{7 ^{2}  - ( \sqrt{5}) ^{2}  }

 \frac{7^{2} + ( \sqrt{5})^{2}+ 2  \times 7 \ \sqrt{5} }{49 - 5}   -  \  \frac{7^{2} + ( { \sqrt{5} )^{2} - 2 \times 7 \sqrt{5}  }  }{49 - 5}

 \frac{49 + 5 + 14 \sqrt{5} }{44}  -  \frac{49 + 5 - 14 \sqrt{5} }{44}

  = \frac{54 + 14 \sqrt{5 - 54 + 14 \sqrt{5} } }{44}

 =  \frac{28 \sqrt{5} }{44}

 =  \frac{7 \sqrt{5} }{11}

 =  \frac{0 + 7 \sqrt{5} }{11}

-----------------------------------------------------------

Hence,

:

 \frac{0 + 7 \sqrt{5} }{11 }  =  \frac{a + 7 \sqrt{5}b }{11}

:

a = 0,b =1

Similar questions