find the values of a and b so that (2x^3 + ax^2 + x + b) has (x + 2) and (2x - 1) as factors.
Answers
Answered by
4
p(x)=2x^3+ax^2+x+b
g(x)=x+2
g(x)=0
x+2=0
x=-2
p(-2)=2*(-2)^3+a*(-2)^2+(-2)+b
=2*(-8)+a*4-2+b
=-16+4a-2+b
=-18+4a+b
=4a+b=18
=a=(18-b)/4
g(x)=2x-1
g(x)=0
2x-1=0
2x=1
x=1/2
p(1/2)=2*(1/2)^3+[(18-b)/4](1/2)^2+1/2+b=0
=2*1/8+[(18-b)/4]*1/4+1/2+b=0
=1/4+(18-b)/16+1/2+b=0
=(4+18-b+8+16b)/16=0
(40+15b)/16=0
40+15b=0
15b=-40
b=-40/15
b=-8/3
a=[18-(-8/3)]/4
a=[18+8/3]/4
a=[(54+8)/3]/4
a=[62/3]/4
a=(62*4)/3
a=66/3
a=22
a=22 and b=-8/3 ans
Similar questions