Math, asked by addy4081, 11 months ago

find the values of A and B so that (x+1) and (x-2) are factors of x^3+ax^2+2x+b​

Answers

Answered by kartik9011
1

Step-by-step explanation:

x+1=0

x=-1

P(x) =x cube +ax square + 2x +b

=(-1)cube + a(-1)square +2(-1)+b

=-1+a-2+b

=a+b-3 - 1

x-2=0

x=2

P(x) =xcube + ax square +2x+ b

=(2) cube +a(2)square +2(2) +b

=8 + 4a +4 +b

=4a+b+12 - 2

Using elimination method

( a+b-3=0) - 1

(4a+b +12=0) - 2

Subtracting 2 from 1

a+ b - 3=0

- 4a+b+12=0

(-) (-) (-)

=-3a +0b - 15=0

a=-15/3

a=-5

In eqn 1

a+b=3

-5 +b=3

b=3+5

b=8

a= - 5

b= 8

Hopefully this will help you.....

Answered by Anonymous
14

given (x + 1) and (x - 2) are the factors of p(x) = x^3 + ax^2 + 2x + b

equating both the factors by 0 we get,

  • x = -1

  • x = 2

when x = -1, p(-1) = (-1)^3 + a(-1)^2 + 2(-1) + b

⇒ -1 + a - 2 + b = 0

⇒ -3 + a + b = 0

⇒ a + b - 3 = 0 -------(i)

when x = 2, p(2) = (2)^3 + a(2)^2 + 2(2) + b

⇒ 8 + 4a + 4 + b = 0

⇒ 12 + 4a + b = 0

⇒ 4a + b + 12 = 0 --------(ii)

subtracting equation (i) from (ii)

⇒ 4a + b + 12 - (-3 + a + b) = 0

⇒ 4a + b + 12 + 3 - a - b = 0

⇒ 4a - a + 15 = 0

⇒ 3a = -15

⇒ a = -15/3

⇒ a = -5

putting value of a in (i)

⇒ -5 + b = 3

⇒ b = 3 + 5

⇒ b = 8

hence, a = -5  and b = 8

Similar questions