Math, asked by Annika2467, 1 year ago

Find the values of a and h (√2+1/√2-1)-(√2-1/√2+1)=a+√2b

Answers

Answered by Prakhar2908
9

Given,( \frac{ \sqrt{2} + 1 }{ \sqrt{2} - 1 } ) -(\frac{ \sqrt{2}- 1}{\sqrt{2}+ 1} ) =a +b \sqrt{2}



To find,



Values of a and b.



Main solution :



Firstly, simplyfying the LHS (\frac{\sqrt{2}+1}{ \sqrt{2}-1}\times\frac{\sqrt{2} + 1 }{ \sqrt{2}+1} )-( \frac{ \sqrt{2}-1 }{ \sqrt{2} +1 }\times\frac{ \sqrt{2}- 1}{\sqrt{2} - 1 } )



( \frac{2+1+2\sqrt{2} }{1} ) - ( \frac{2+1 -2\sqrt{2} }{1} )



(2+1+ 2 \sqrt{2} )- (2+1-2 \sqrt{2})



(3 + 2 \sqrt{2} ) - (3 - 2 \sqrt{2} )



3 + 3 \sqrt{2}- 3 + 2 \sqrt{2}



0+4\sqrt{2}



Now, comparing this result to RHS:-



0+4\sqrt{2}= a+b\sqrt{2}



We can see that:-a = 0 and b = 4



Answer :- a=0;b=4


Prakhar2908: The 0 +4√2 is in next line. Sorry
Answered by BrainlyQueen01
18

Hey there !


__________________________



Given :



 \bold{( \frac{ \sqrt{2} + 1}{ \sqrt{2} - 1 } ) - ( \frac{ \sqrt{2} - 1 }{ \sqrt{2} + 1 } ) = a + \sqrt{2} b}



To find the value of a and b , we need to simplify LHS , by rationalising it's denominator.



We have;



 \bold{( \frac{ \sqrt{2} + 1}{ \sqrt{2} - 1 } ) - ( \frac{ \sqrt{2} - 1 }{ \sqrt{2} + 1 } ) = a + \sqrt{2} b} \\ \\ \\ \\ \bold{\frac{ \sqrt{2} + 1}{ \sqrt{2} - 1 } \times \frac{ \sqrt{2} + 1 }{ \sqrt{2} + 1} } - \bold{\frac{ \sqrt{2} - 1 }{ \sqrt{2} + 1 } \times \frac{ \sqrt{2} - 1 }{ \sqrt{2} - 1} } \\ \\ \\ \bold{ \frac{( \sqrt{2} + 1) {}^{2} }{( \sqrt{2}) {}^{2} - (1) {}^{2} } - \frac{( \sqrt{2} - 1) {}^{2} }{( \sqrt{2}) {}^{2} - (1) {}^{2}} } \\ \\ \\ \bold{ \frac{2 + 1 + 2 \sqrt{2} }{2 - 1} - \frac{2 + 1 - 2 \sqrt{2} }{2 - 1} } \\ \\ \\ \bold{\cancel 3 + 2 \sqrt{2} - \cancel 3 + 2 \sqrt{2} } \\ \\ \\ \bold{ 0 + 4 \sqrt{2} }



Now, on comparing LHS with RHS, we get ;



\bold{0 + 4 \sqrt{2} = a + b \sqrt{2} }



Therefore, the value of a and b are ;



 \therefore \: {\bold{a = 0 \: \: and \: \: b = 4}}



__________________________



Thanks for the question !


Prakhar2908: Beautiful Answer !
BrainlyQueen01: Thanks :)
Similar questions