Math, asked by kiran942003gmailcom, 4 months ago

find the values of candy y in the following rectangle​

Attachments:

Answers

Answered by as6371815
0

Answer:

x + 3y = 13  -  -  -  -  - (1)\\  rectangle \: me \: aamne \: samne \: ki \: side \: eqaul \: hoti \: h \: \\  \\ 3x + y = 7 -  -  -  -  -  - (2) \\   \\   3 x + 9y = 39  \\  (3 \ \times  eq. (1))(equation1 \: me \: 3 \: ka \: \\  multiply) \\  \\ equation \: (1) \: me \: equation(2) \: ko \: \\  subtract \: krne \: pr \\ 3x + 9y = 39 -  -  - (1) \\ 3x + y = 7 -  -  - (2) \\  \:  \:  \:  -  \\  -  -  -  -  -  -  -  -  -  -  -  -  -  \\ 8y = 32 \\  =  > y =  \frac{32}{8}  \\ (y = 4) \\ y \: ki \: value \: ko \: equation \\ (2) \: me \: put \: krne \: pr \:  \\ 3x + y = 7 \\  =  > 3x + 4 = 7 \\  =  > 3x = 3 \\  \\ (x = 1)

Step-by-step explanation:

x=1. y=4

Answered by Anonymous
2

The value of x and y in the following rectangle is 1 and 4

Solution :

Since we know that two lengths and breadths of the rectangle is equal. Hence ,

x + 3y = 13.......(1) \\ 3x + y = 7........(2)

Let's evaluate (1)

x  + 3y = 13 \\ x = 13 - 3y

So now substitute the value of x in (2)

3x + y = 7 \\ 3(13 - 3y) + y = 7 \\ 39 - 9y + y = 7 \\ 39 - 8y = 7 \\  - 8y = 7 - 39 \\  - 8y =  - 32 \\ y =  \frac{ - 32}{ - 8}  \\ y = 4

Now let's substitute the value of y in (1)

x + 3y = 13 \\ x + 3(4) = 13 \\ x + 12 = 13 \\ x = 13 - 12 \\ x = 1

Similar questions