Math, asked by guptuv2003, 9 months ago

Find the values of k for which 2x^2-3x+k^2-3k+4 attains all Positive and negative values
I WILL MARK BRAINLIEST

Answers

Answered by rajk7489416gmailcom
0

we \: know \: for \: quadratic \: equation \:  -  \\  \\ =  d \geqslant 0 \:  \:  \:  \:  : \bold \green{ \: for \: real \: values} \\  \\  =  \sqrt{ {b}^{2}  - 4ac}  \geqslant 0 \\  \\  =  \sqrt{ {3}^{2}  - 4 \times 2 \times ( {k}^{2}  - 3k + 4)}  \geqslant 0 \\  \\  =  \sqrt{9 - 8 {k}^{2}  + 24k - 32} \geqslant 0 \\  \\   =  - 8 {k}^{2}   + 24k  - 23 \geqslant 0 \\  \\  = 8 {k}^{2}  - 24k + 23 \leqslant 0 \\  \\  8 {k}^{2}  - 24k + 23 = 0 \\  \\ k =    \frac{ 24 +   \sqrt{576 - 4 \times 23 \times 8} }{2 \times 8}  \\  \\  k =  \frac{24 +  \sqrt{24 \times 24 - 4 \times 8 \times 23} }{2 \times 8}  \\  \\ k =  \frac{4(6 +  \sqrt{36 - 46)} }{2 \times 8}  \\  \\  \bold \red{here \: we \: find \: the \: values \: are \: not \: real} \\  \\  \bold \green{hence \: there \: is \: no \: values \: of \: k \: which \: is \: real}

Similar questions