Math, asked by srinjoy324ghatak, 4 months ago

Find the values of k for which the following equation has equal roots :
(k−12)x 2 +2(k−12)x+2=0

Answers

Answered by amansharma264
46

EXPLANATION.

Quadratic equations,

⇒ (k - 12)x² + 2(k - 12)x + 2 = 0.

As we know that,

D = Discriminant  Or b² - 4ac.

Roots are real and equal,

D = 0  Or b² - 4ac = 0.

⇒ [2(k - 12)²] - 4(k - 12)(2) = 0.

⇒ [4(k² + 144 - 24k)] - 4[2k - 24] = 0.

⇒ [4k² + 576 - 96k] - 8k + 96 = 0.

⇒ 4k² + 576 - 96k - 8k + 96 = 0.

⇒ 4k² - 104k + 672 = 0.

⇒ 4[k² - 26k + 168] = 0.

⇒ k² - 26k + 168 = 0.

⇒ k² - 14k - 12k + 168 = 0.

⇒ k(k - 14) - 12(k - 14) = 0.

⇒ (k - 12)(k - 14) = 0.

⇒ k = 12  and  k = 14.

                                                                                                                       

MORE INFORMATION.

Nature of the factors of the quadratic expression.

(1) = Real and different, if b² - 4ac > 0.

(2) = Rational and different, if b² - 4ac is a perfect square.

(3) = Real and equal, if b² - 4ac = 0.

(4) = If D < 0 Roots are imaginary and unequal or complex conjugate.

Answered by Anonymous
34

a = k – 12, b = 2 (k – 12), c = 2

∴ D = b2 – 4ac = [2(k– 12)]2

– 4(k – 12) x 2

= 4 (k – 12)2 – 8 (k– 12)

Roots are equal, if D = 0

⇒ 4 (k – 12) 2 – 8 (k – 12) = 0

⇒ 4(k – 12)(k – 12 – 2) = 0

⇒ (k – 12) (k – 14) = 0

⇒ k = 12 or 14

But k = 12 does not satisfy the eqn.

k = 14 Ans.

Attachments:
Similar questions