Math, asked by Bhagat111, 1 year ago

find the values of k, for which the given quadratic equation has equal roots: 4x2+ kx + 6=0

Answers

Answered by gaurav2013c
0
Since the equation has equal roots

Discriminent = 0

=> b^2 - 4ac = 0

=> k^2 - 4(4)(6)= 0

=> k^2 - 96 = 0

=> k^2 = 96

=> k = + - 4 root6

k =  + 4 \sqrt{6}  \\  \\ k =  - 4 \sqrt{6}
Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=\pm 4\sqrt{6}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\   \tt{ : \implies 4x^{2}  +kx + 6= 0 }\\  \\ \red{ \underline \bold{To \: Find : }} \\    \tt{: \implies  value \: of \: k = ?}

• According to given question :

  \tt{ : \implies 4x^{2}  +kx + 6= 0} \\   \\   \tt{\circ  \: a = 4} \\ \\  \tt{\circ \: b = k}\\\\ \tt{\circ \:c = 6}\\ \\   \bold{Discriminant \:  = 0} \\  \\     \tt{:  \rightarrow \: D \implies  {b}^{2} - 4ac = 0 } \\  \\    \tt{: \implies  {b}^{2}  - 4ac = 0} \\  \\  \text{Putting \: the \: given \: values} \\   \tt{: \implies k^{2}  -  4\times4\times 6= 0 } \\  \\    \tt{: \implies \:  {k}^{2}  -96 = 0 } \\  \\  \tt{ : \implies \:   ({k}^{2}   - (4\sqrt{6})^{2}) = 0 } \\\\ \tt{: \implies (k-4\sqrt{6})(k+4\sqrt{6})= 0} \\  \\   \tt{: \implies k=4\sqrt{6}\:and\:-4\sqrt{6}} \\  \\   \green{\tt{: \implies k = \pm4\sqrt{6} }}

Similar questions