Math, asked by Alran1406, 5 months ago

Find the values of k so that the quadratic equation 3x² - 2kx + 12 = 0 has equal roots.​

Answers

Answered by SuitableBoy
68

{\huge{\underline{\underline{\rm{Question:-}}}}}

Q) Find the values of k so that the Quadratic Equation 3x² - 2kx + 12 = 0 has equal roots .

 \\

{\huge{\rm{\underline{\underline{Answer\checkmark}}}}}

 \\

Given :·

  • Quadratic equation : 3x² - 2kx + 12 = 0
  • This equation has equal roots .

 \\

To Find :·

  • The value of k .

 \\

Solution :·

The standard Quadratic Equation is in the form :

 \boxed{ \tt{a {x}^{2}  + bx + c}}

Compare it with given Equation :

 \tt \: a {x}^{2}  + bx + c  \rang \lang \: 3 {x}^{2}  - 2kx + 12

We get -

  • a = 3
  • b = -2k
  • c = 12

Now , as we know that the Equation has equal roots so ,

The Discriminant (d) must be equal to zero (0)

Using the Formula to find discriminant -

 \boxed{ \tt{d =  {b}^{2}  - 4ac}}

 \mapsto \rm \: d =  {( - 2k)}^{2}  - 4 \times 3 \times 12

 \mapsto \rm \: 0 = 4 {k}^{2}  - 144

 \mapsto \rm \: 0 = 4( {k}^{2}  - 36)

 \mapsto \rm \: 0 =  {k}^{2}  - 36

 \mapsto \rm \: 0 =  {k}^{2}  -  {6}^{2}

Using

 \boxed{ \tt \:  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)}

 \mapsto \rm \: (k + 6)(k - 6) = 0

So ,

Either

 \rightarrow \rm \: k + 6 = 0

 \rightarrow   \underline{\boxed{\rm{ \pink{ k =  - 6}}}}

Or

 \rightarrow \rm \: k - 6 = 0

 \rightarrow  \underline{\boxed{ \rm{ \purple{k = 6}}}}

 \\

So ,

The value of k is either 6 or -6 .

 \\

_________________________

 \\

Know More :·

• If

 \sf \: d > 0 \:  \:  \: roots \: are \: real \: and \: distinct \: .

• If

 \sf \: d = 0 \:  \:  \: roots \: are \: real \: and \: equal \: .

• If

 \sf \: d < 0 \:  \:  \: roots \: are \: imaginary \: .

• A Quadratic Equation has 2 roots or zeroes .

• Standard form of a Quadratic Equation

 \boxed{ \frak{a {x}^{2}  + bx + c}}

Similar questions