Find the values of m and n if the following expressions are perfect squares:x⁴-8x³+mx²+nx+16
Answers
Answer:
hd use use BB TT use be hee hee haw hee hee hee hee hee hee FF be
Answer:
24 , 32
Step-by-step explanation:
Given
Find the square root of x^4-8x^3+mx^2+nx+16 and also find the value of m and n
Now we need to find square root of the given expression
So x^2 – 4x + (m – 16)/2
------------------------------------------------------------------
x ^2 x^4 – 8x^3 + mx^2 + nx + 16
2x^2 – 4 x x^4
----------------------------------------------------
- 8x^3 + mx^2
-8x^3 + 16x^4
--------------------------------------------------------------------------------------
2x^2 – 8 x + (m – 16)/2 (m – 16)x^2 + nx + 16
(m – 16)x^2 – 4(m – 16)x + [m – 16/2]^2
Equating the constant term we get
[(m – 16) / 2]^2 = 16
(m – 16)/2 = 4
m – 16 = 8
m = 8 + 16
m = 24
By equating coefficients of x we get
n = - 4(m – 16)
n = -4 (24 – 16)
n = - 4 x 8
n = - 32
So the values of m and n are 24 and - 32
Step-by-step explanation: