Math, asked by devadharshy13, 10 months ago

Find the values of m and n if x^4-8x^3+(m +16)x^2+ +(n-16)X +16 is a perfect square.​

Answers

Answered by shadowsabers03
4

Given,

\longrightarrow\sf{p(x)=x^4-8x^3+(m+16)x^2+(n-16)x+16\quad\quad\dots(1)}

Since \sf{p(x)} is a perfect square, the square root of \sf{p(x)} should be a quadratic polynomial, since \sf{p(x)} has a degree 4.

We see the coefficient of \sf{x^4} in \sf{p(x)} is 1, so is that of \sf{x^2} in square root of \sf{p(x).} Then let,

\longrightarrow\sf{p(x)=(x^2+ax+b)^2\quad\quad\dots(2)}

Equating right hand sides of (1) and (2),

\longrightarrow\sf{(x^2+ax+b)^2=x^4-8x^3+(m+16)x^2+(n-16)x+16}

\longrightarrow\sf{x^4+a^2x^2+b^2+2\left(ax^3+bx^2+abx\right)=x^4-8x^3+(m+16)x^2+(n-16)x+16}

\longrightarrow\sf{x^4+2ax^3+\left(a^2+2b\right)x^2+2abx+b^2=x^4-8x^3+(m+16)x^2+(n-16)x+16}

By equating like terms, we get,

\longrightarrow\sf{2a=-8\quad\quad\dots(3)}

\longrightarrow\sf{a^2+2b=m+16\quad\quad\dots(4)}

\longrightarrow\sf{2ab=n-16\quad\quad\dots(5)}

\longrightarrow\sf{b^2=16\quad\quad\dots(6)}

From (3),

\longrightarrow\sf{a=-4}

And from (6),

\longrightarrow\sf{b=\pm4}

Let \sf{b=4.} Then from (4),

\longrightarrow\sf{(-4)^2+2\times4=m+16}

\longrightarrow\sf{m+16=24}

\longrightarrow\sf{\underline{\underline{m=8}}}

And from (5),

\longrightarrow\sf{2\times-4\times4=n-16}

\longrightarrow\sf{n-16=-32}

\longrightarrow\sf{\underline{\underline{n=-16}}}

Let \sf{b=-4.} Then from (4),

\longrightarrow\sf{(-4)^2+2\times-4=m+16}

\longrightarrow\sf{m+16=8}

\longrightarrow\sf{\underline{\underline{m=-8}}}

And from (5),

\longrightarrow\sf{2\times-4\times-4=n-16}

\longrightarrow\sf{n-16=32}

\longrightarrow\sf{\underline{\underline{n=48}}}

Similar questions