Math, asked by barnojwal, 10 months ago

Find the values of m and n so that the polynomial a³ - ma² - 13a + n has (a - 1)and
(a + 3) as factors​

Answers

Answered by Anonymous
39

Solution

Given :-

  • Polynomial, a³ - ma² - 13a + n = 0
  • Zeroes of given polynomial ( a -1) & (a+3)

Find :-

  • Value of m & n

Explanation,

we know,

If ( a +3) & ( a-1) be zeros of given equation , its meant that value of a satisfied of given polynomial .

Case(1).

  • when , a = 1

keep in equation,

➠ (1)³ - m * 1² - 13 * 1 + n = 0

➠ 1 - m - 13 + n = 0

➠ m - n = - 12 -----------(1)

Case(2).

  • when, a = -3

Keep in equation

➠ (-3)³ - m * (-3)² - 13 * (-3) + n = 0

➠ -27 - 9m + 39 + n = 0

➠ 9m - n = 12 ------------(2)

Subtract equ(1) & equ(2)

➠ m - 9m = -12 - 12

➠ -8m = - 24

➠ m = (-24)/(-8)

➠ m = 3

Keep Value in equ(1)

➠ 3 - n = - 12

➠ n = 3 + 12

➠ n = 15

Hence

  • Value of n = 15
  • Value of m = 3

_________________

Answered by Anonymous
63

\large\underline\bold{Question:-}

Find the values of m and n so that the polynomial a³ - ma² - 13a + n has (a - 1)and (a + 3) as factors.

\large\underline\bold{Answer:-}

\small\underline\bold{Given:-}

\sf\ Polynomial:- a^3-ma^2-13a+n

\sf\ Zeroes\:of\: polynomial = (a-1)(a+3)

\small\underline\bold{Required\:Solution:-}

\small\underline\bold\pink{Case\:1:-}

\sf\ Firstly, \:if \:a-1\: is\: factor

\sf\ then,\: a=1

\small\bold{Putting\:the\:value}

\sf\ P(1)=13-m(12)-13(1)+n=0

\sf\  = -12-m+n=0 --- (1)

\small\underline\bold\pink{Case\:2:-}

\sf\ If \:a+3\: is \:factor \:then\:

\sf\ a=-3

\small\bold{Putting\:the\:value}

\sf\ P(-3)=(-3)^3-m(-3)^2-13(-3)+n

\sf\ = 12-9m+n=0 ---(2)

\large\underline\bold{ From\: (1)\: and\: (2)\: we \:get,}

\sf\ -12-m+n=12-9m+n

\sf\ -m+n+9m-n=-24

\sf\ -8m=-24

\sf\ m=3

\small\bold{Keep\:the\: values\:from\:eq\:1}

\sf\ n=12+m \:   [using(1)]

\sf\ n=12+3

\sf\ n=15

\sf\ Hence,

\dagger\small\underline\bold\purple{Value\:of\:m= 3}

\dagger\small\underline\bold\purple{value\:of\:n= 15}

\rule{200}3

Similar questions