Math, asked by PragyaTbia, 1 year ago

Find the values of other five trigonometric functions for the following: sce x =\frac{13}{5}, x lies in fourth quadrant.

Answers

Answered by abhi178
3
given, secx = 13/5 , x lies in 4th quadrant.

we know, in 4th quadrant,
sin, cosec => negative
cos, sec => positive
tan , cot => negative.

secx = 13/5 , cosx = 1/secx = 5/13

we know, sec²x - tan²x = 1 [ from trigonometric identities]
(13/5)² - tan²x = 1
(13/5)² - 1 = tan²x
169/25 - 1 = tan²x
144/25 = tan²x
tanx = ±12/5 , but tanx ≠ 12/5 because x lies in 4th quadrant .
so, tanx = -12/5 and cotx = 1/tanx = -5/12

now, sin²x +cos²x = 1 [ from trigonometric identities]
sin²x + (5/13)² = 1
sin²x = 1 - (5/13)² = 144/169
sinx = ± 12/13 but sinx ≠ 12/13 because x lies in 4th quadrant.
so, sinx = -12/13 and cosecx = -13/12
Answered by Anonymous
3

\Large{\textbf{\underline{\underline{According\:to\:the\:Question}}}}

\tt{\rightarrow secx=\dfrac{13}{5}}

As we know that :-

\tt{\rightarrow cosx=\dfrac{1}{secx}}

\tt{\rightarrow cosx=\dfrac{1}{(13/5)}}

\tt{\rightarrow cosx=\dfrac{5}{13}}

Also we know that :-

{\boxed{\sf\:{sin^2x+cos^2x=1}}}

sin²x = 1 - cos²x

Hence,

{\boxed{\sf\:{Putting\;the\;values\;:-}}}

\tt{\rightarrow sin^2x=1-(\dfrac{5}{13})^2}

\tt{\rightarrow sin^2x=1-\dfrac{25}{169}}

\tt{\rightarrow sin^2x=\dfrac{144}{169}}

\tt{\rightarrow sinx=\pm\dfrac{12}{13}}

Here we get,

x lies in 4th quadrant.

Hence,

Value of sinx will be negative.

Now,

\tt{\rightarrow sinx=-\dfrac{12}{13}}

Now,

\tt{\rightarrow cosecx=\dfrac{1}{sinx}}

\tt{\rightarrow cosecx=\dfrac{1}{(-12/13)}}

\tt{\rightarrow cosecx=-\dfrac{13}{12}}

Now,

\tt{\rightarrow tanx=\dfrac{sinx}{cosx}}

\tt{\rightarrow tanx=\dfrac{(-12)/13}{(5/13)}}

\tt{\rightarrow tanx=-\dfrac{12}{5}}

Now,

\tt{\rightarrow cotx=\dfrac{1}{tanx}}

\tt{\rightarrow cotx=\dfrac{1}{-(12/5)}}

\tt{\rightarrow cotx=-\dfrac{5}{12}}

Similar questions