Math, asked by gopikaswin2016, 1 year ago

Find the values of p and q, if √5+√3 / √5−√3 - √5−√3 / √5+√3 = + √15 q

Answers

Answered by siddhartharao77
8

Answer:

p = 0, q = 2

Step-by-step explanation:

Given:\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}

=\frac{(\sqrt{5}+\sqrt{3})^2-(\sqrt{5}-\sqrt{3})^2}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}

=\frac{8+2\sqrt{15}-(8-2\sqrt{15})}{(\sqrt{5})^2-(\sqrt{3})^2}

=\frac{8+2\sqrt{15}-8+2\sqrt{15}}{5-3}

=\frac{4\sqrt{15}}{2}

=2\sqrt{15}

It can be written as,

0 + 2√15

On comparing with p + √15q, we get

0 + 2√15 = p + √15q

p = 0, q = 2


Hope it helps!

Answered by Anonymous
7

Answer:

\pink{\boxed{\mathfrak{p=0}}}\\\\\ted{\boxed{\mathfrak{q=2}}}


Step-by-step explanation:


L.H.S


\mathsf{\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}}


\implies\mathsf{\frac{(\sqrt{5}+\sqrt{3})^2-(\sqrt{5}-\sqrt{3})^2}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})}}


\implies\mathsf{\frac{5+3+2\sqrt{15}-(5+3-2\sqrt{15})}{(\sqrt{5})^2-(\sqrt{3})^2}}


\implies\mathsf{\frac{8+2\sqrt{15}-(8-2\sqrt{15})}{(\sqrt{5})^2-(\sqrt{3})^2}}


\implies\mathsf{\frac{8+2\sqrt{15}-8+2\sqrt{15}}{5-3}}


\mathsf{\implies \frac{4\sqrt{15}}{2}}


\mathsf{\implies 2\sqrt{15}}


L.H.S = R.H.S

\mathsf{2\sqrt{15}=p+\sqrt{15}q}

\mathsf{0+2\sqrt{15}=p+\sqrt{15}q}


\underline{\textsf{From this compare the rational and irrational values :}}


\mathsf{p=0}


\mathsf{q\sqrt{15}=2\sqrt{15}}

\mathsf{q=2}

Similar questions