Math, asked by rohitdhawale1390, 1 month ago

find the values of p and q if x^2 - 1 is a factor of x^4 - 7x^3 + px^2 + qx - 10

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\rm :\longmapsto\: {x}^{2} - 1 \: is \: factor \: of \:  {x}^{4} -  {7x}^{3}  +  p {x}^{2} +  qx - 10

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:p \: and \: q

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: {x}^{2} - 1 \: is \: factor \: of \:  {x}^{4} -  {7x}^{3}  +  p {x}^{2} +  qx - 10

Let assume that

\rm :\longmapsto\: f(x)\:  =  \:  {x}^{4} -  {7x}^{3}  +  p {x}^{2} +  qx - 10

Now, further it is given that

\rm :\longmapsto\: {x}^{2}  - 1 \: is \: factor \:of \: f(x)

\rm :\longmapsto\: (x - 1)(x + 1) \: is \: factor \:of \: f(x)

Two cases arises :-

Case 1

\rm :\longmapsto\: x - 1 \: is \: factor \:of \: f(x)

We know,

By Factor Theorem, it state that if a polynomial p(x) is divisible by linear polynomial (x - a), then p(a) = 0 or if linear polynomial (x - a) is a factor of polynomial p(x), then p(a) = 0.

Thus,

\rm :\longmapsto\:f(1) = 0

\rm :\longmapsto\:  {(1)}^{4} -  {7(1)}^{3}  +  p {(1)}^{2} +  q(1) - 10 = 0

\rm :\longmapsto\:1 - 7 + p + q - 10 = 0

\rm :\longmapsto\:+ p + q - 16 = 0

\bf :\longmapsto\:+ p + q = 16 -  -  -  - (1)

Case - 2

\rm :\longmapsto\: x  + 1 \: is \: factor \:of \: f(x)

So, by factor theorem,

\rm :\longmapsto\:f( - 1) = 0

\rm :\longmapsto\:  {( - 1)}^{4} -  {7( - 1)}^{3}  +  p {( - 1)}^{2} +  q( - 1) - 10 = 0

\rm :\longmapsto\:1 + 7 + p  - q - 10 = 0

\rm :\longmapsto\: p  - q - 2= 0

\bf :\longmapsto\: p  - q = 2 -  -  -  - (2)

Now, On adding equation (1) and (2), we get

\rm :\longmapsto\:2p = 18

\bf :\longmapsto\:p = 9 -  -  -  -  - (3)

On substituting value of p in equation (1), we get

\rm :\longmapsto\:9 + q = 16

\rm :\longmapsto\: q = 16 - 9

\bf :\longmapsto\: q = 7

Hence,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf \: p = 9}} \:  \:  \: and \:  \:  \: \underbrace{ \boxed{ \bf \: q = 7}}

Additional Information :-

Remainder Theorem :-

This theorem states that if a polynomial p(x) is divisible by linear polynomial (x - a), then remainderis p(a).

Similar questions