Math, asked by sindhuthomas, 1 year ago

Find the values of p and q so that (x+1) and (x-1) are the factors of polynomial x^4+px^3+2x^2-3x+q

Answers

Answered by ShuchiRecites
14
\textbf{ Hello Mate! }

Gare up = If (x+1) and (x-1) neded to be made factors then value of x = - 1 and + 1 where fi al value of f(x) = 0.

Concept = We will make two equations, the add and then we will substitue the values.

Solution :-

f(x) =  {x}^{4}  + p {x}^{3}  + 2 {x}^{2}  - 3x + q \\ f( - 1) =  {( - 1)}^{4}  + p( { - 1)}^{3}  + 2 {( - 1)}^{2}  - 3( - 1) + q \\ 0 = 1 - p + 2 + 3 + q \\  - 6 =  - p + q \\  - 6 =  - (p - q) \\ 6 = p - q \: ......(1)

f(1) =  {(1)}^{4}  + p( {1)}^{3}  + 2 {(1)}^{2}  - 3(1) + q \\ 0 = 1 + p + 2 - 3 + q \\ 0 = p + q \: ......(2)

On adding (1) and (2) we get

6 = 2p

3 = p

Substituting value of p in eq (2)

0 = p + q

0 = 3 + q

- 3 = q

\boxed{ \textsf{ \red{ Answer:\:p=3\:and\:q=\:-3 }}}

Have great future ahead!
Answered by Anonymous
21

\huge\underline\mathfrak{Answer:-}

Let p(x) be the polynomial \sf{x^4+px^3+2x^2-3x+q}then,

\sf{p(x)=x^4+px^3+2x^2-3x+q}

\sf{Since\:(x-1)\:is\:a\:factor\:of\:p(x)=}

\sf{x^4+px^3+2x^2-3x+q,then}

\sf{p(1)=0}

\sf{(1)^4+p(1)^3+2(1)^2-3(1)+q=0}

\sf{1+p+2-3+q=0}

\sf{p+q=0}

\sf{Again,\:(x+1)\:is\:a\:factor\:of\:p(x)=}

\sf{x^4+px^3+2x^2-3x+q,then}

\sf{p(1)=0}

\sf{(-1)^4+p(-1)^3+2(-1)^2-3(-1)+q=0}

\sf{1-p+2+3+q=0}

\sf{-p+q=-6}

\bold{\large{\boxed{\sf{\red{Adding\:(1)\:and\:(2)\:we\:get:-}}}}}

\sf{2q=0-6=-6}

\implies\sf{q=-3}

But p+q=0

\implies\sf{p=-q=-(-3)=3}

\bold{\large{\boxed{\sf{\pink{Thus,\:p=3\:and\:q=-3}}}}}

Similar questions