Math, asked by garghemlata1980, 8 months ago

find the values of p so that the equation (p-4) x-2 (p-4) x+4=0 has real roots​

Answers

Answered by Anonymous
2

GIVEN :-

  • (p-4) x-2 (p-4) x+4=0 has real roots

TO FIND :-

  • value of p

SOLUTION :-

WE KNOW THAT CONDITION FOR REAL ROOTS :-

 \implies \boxed{ \rm{ {b}^{2}  - 4ac \geqslant  \: 0}}

hence,

 \implies \rm{(p - 4) ^{2}  - (4)(4)(p - 4) \geqslant 0}

now we know that IDENTITY :-

\implies  \boxed{\rm{(a - b) ^{2}  =  {a}^{2}   +  {b}^{2} } - 2ab}

hence

\implies \rm{(p {}^{2}   + 16 - 8p)   - (4)(4)(p - 4) \geqslant 0}

\implies \rm{(p {}^{2}   + 16 - 8p)   - (16)(p - 4) \geqslant 0}

\implies \rm{(p {}^{2}   + 16 - 8p)   - (16p - 64) \geqslant 0}

\implies \rm{(p {}^{2}   + 16 - 8p)   - 16p  + 64\geqslant 0}

\implies \rm{p {}^{2}   + 16 - 8p  - 16p  + 64\geqslant 0}

\implies \rm{p {}^{2}    - 24p+ 80\geqslant 0}

now by middle term break

\implies \rm{p {}^{2}    -( 20 + 4)p+ 80\geqslant 0}

\implies \rm{p {}^{2}    -20p  -  4p+ 80\geqslant 0}

\implies \rm{p  \: (p    -20)  - 4 \: (p - 20)\geqslant 0}

hence , (1)

\implies \rm{ \: (p    -20)  (p - 4)\geqslant 0}

\implies \rm{ \: (p    -20)  \geqslant 0}

\implies \boxed{ \rm{ \: p     \geqslant 20}}

now again (2)

\implies \rm{ \: (p    -20)  (p - 4)\geqslant 0}

\implies \rm{ \: (p    -4)  \geqslant 0}

\implies \boxed{ \rm{ \: p   \geqslant 4}}

HENCE VALUES OF P ARE :-

\implies  \boxed{\boxed{ \rm{ \: p   \geqslant 4 \: and \:\: p   \geqslant20}}}

OTHER INFORMATION :-

Discriminant :

  • For a quadratic equation of the form ax²+bx+c=0, the expression b²−4ac is called the discriminant, (denoted by D), of the quadratic equation.

  • The discriminant determines the nature of roots of the quadratic equation based on the coefficients of the quadratic equation.

nature of roots :

Based on the value of the discriminant, D=b2−4ac, the roots of a quadratic equation can be of three types.

  • Case 1: If D>0, the equation has two distinct real roots.

  • Case 2: If D=0, the equation has two equal real roots.

  • Case 3: If D<0, the equation has no real roots.
Similar questions