Math, asked by Arjun1855, 5 months ago

Find the values of sin4 theta / sin theta (with proof)​

Answers

Answered by MaIeficent
3

Step-by-step explanation:

To Find:-

  • \sf \: The \: value \: of \:  \:  \:  \dfrac{sin4 \theta}{sin \theta}

Formulas used:-

  • sin(A + B) = sinA cosB + cosA sinB

  • sin3θ= 3sinθ - 4sin³θ

  • cos3θ = 4cos³θ - 3cosθ

  • sin²θ = 1 - cos²θ

Solution:-

sin4θ = sin(3θ + θ)

= sin3θ cosθ + cos3θ sinθ

= (3sinθ - 4sin³θ) cosθ + (4cos³θ - 3cosθ) sinθ

= 3sinθcosθ - 4sin³θ cosθ + 4cos³θ sinθ - 3cosθ sinθ

= 3sinθcosθ - 3cosθ sinθ + 4cos³θ sinθ - 4sin³θ cosθ

= 4cos³θ sinθ - 4sin³θ cosθ

= sinθ(4cos³θ - 4sin²θ cosθ)

\therefore \underline{  \:  \: \underline{ \: \sf sin4 \theta = sin \theta(4 {cos}^{3}  \theta - 4 {sin}^{2} \theta cos \theta) \:  } \:  \: }

We need to find the value of \sf  \dfrac{sin4 \theta}{sin \theta}

\sf  \dfrac{sin4 \theta}{sin \theta}  =  \dfrac{sin \theta(4 {cos}^{3}  \theta - 4 {sin}^{2} \theta cos \theta)}{sin \theta}

\sf  =  4 {cos}^{3}  \theta - 4 {sin}^{2} \theta cos \theta

\sf  =  4 {cos}^{3}  \theta - 4(1 - {cos}^{2} \theta) cos \theta

\sf  =  4 {cos}^{3}  \theta - 4 cos \theta + 4cos^3 \theta

\sf  =  8 {cos}^{3}  \theta - 4 cos \theta

\underline{\boxed{\sf \therefore \dfrac{sin4 \theta}{sin \theta} = 8 {cos}^{3}  \theta - 4 cos \theta}}

Similar questions