Math, asked by amitkumar455, 11 months ago

Find the values of the five trigonometric functions if Cos x = - 1/2, x lies in third quadrant.​

Answers

Answered by 123utkarsh5678
1

Answer:

cos==1/2 =log =cos1/2-1/2

Step-by-step explanation:

Answered by Anonymous
25

\huge\underline\mathbb {SOLUTION:-}

 \mathsf {\cos \: x =  -  \frac{1}{2}}

\therefore \mathsf {\sec \: x =  \frac{1}{ \cos \: x } =  \frac{1}{( -  \frac{1}{2}) }   =  - 2}

 \sin {}^{2}  \: x +  \cos {}^{2} \: x = 1

\implies \mathsf {\sin {}^{2}  \: x = 1 -  \cos {}^{2}  \: x}

\implies \mathsf {\sin {}^{2}  \: x = 1 - ( -  \frac{1}{2} ) {}^{2}}

\implies \mathsf {\sin {}^{2}  \: x = 1 -  \frac{1}{4}  =  \frac{3}{4}}

\implies \mathsf {\sin \: x =  \pm \: \frac{ \sqrt{3} }{2}}

  • Since, x lies in the 3rd quadrant, the value of sin x will be negative.

\therefore \mathsf {\sin \: x =  -  \frac{ \sqrt{3} }{2}}

\mathsf {\cos \: ecx =  \frac{1}{ \sin \: x }  =  \frac{1}{( -  \frac{ \sqrt{3} }{2})  }  =  -  \frac{2}{ \sqrt{3} } }

\mathsf {\tan \: x =  \frac{ \sin \: x }{ \cos \: x}  =  \frac{( -  \frac{ \sqrt{3} }{2}) }{( -  \frac{1}{2}) }  =  \sqrt{3}}

 \mathsf \blue {\cos \: x =  \frac{1}{ \tan \: x }  =  \frac{1}{ \sqrt{3} }}

Similar questions