Find the values of the following: sin 75°
Answers
Answered by
0
Answer:
sin 75°= (√3 + 1)/ 2√2
Step-by-step explanation:
Sin 75° we can write it as
Sin 75° = Sin(45°+30°)
Applying the formula
Sin (A + B) = Sin A. Cos B + Cos A. Sin B
So, Sin (45° + 30°) = Sin 45°. Cos 30° + Cos 45°. Sin 30°
We know that sin 45° = 1/√2
cos 30°= √3/2
cos 45° = 1/√2
and sin 30° = 1/2
So,
Sin 45°. Cos 30° + Cos 45°. Sin 30° = 1/√2 . √3/2 + 1/√2 . 1/2
Sin (45° + 30°)
SIn 75° = (√3 + 1) / 2√2
Similar questions