Math, asked by nshdlm37177, 11 months ago

find the values of the rational numbers A and B if 5 + 2 root 3 / 7 + 4 root 3 is equal to a + b root 3​

Attachments:

Answers

Answered by parveenshalma0159
4

Answer:

Top answer ·

lhs = (5+2√3)/(7+4√3)= [(5+2√3)(7-4√3)]/[(7-4√3)(7+4√3)]=[35-20√3+14√3-24]/[7²-(4 ...

Step-by-step explanation:

Top answer ·

lhs = (5+2√3)/(7+4√3)= [(5+2√3)(7-4√3)]/[(7-4√3)(7+4√3)]=[35-20√3+14√3-24]/[7²-(4 ...

Answered by amitkumar44481
24

AnsWer :

a = 13 and b = 34√3.

To Find :

The value of a and b

Solution :

  \tt \dagger \:  \:  \:  \:  \: \dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  = a + b \sqrt{3}

  \tt :  \implies\dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }

  \tt : \implies\dfrac{5 + 2 \sqrt{3} }{7 + 4 \sqrt{3} }  \times  \dfrac{7 - 4 \sqrt{3}  }{7  -  4 \sqrt{3} }

  \tt :  \implies\dfrac{(5 + 2 \sqrt{3})(7 - 4 \sqrt{3}  )}{ {7}^{2}  - {(4 \sqrt{3} )}^{2}  }

  \tt :  \implies\dfrac{35 - 20 \sqrt{3}  - 14 \sqrt{3}  - 48}{49 - 48}

  \tt :  \implies\dfrac{ - 13 - 34 \sqrt{3} }{1}

  \tt :  \implies  - 13 - 34 \sqrt{3} .

Taking Negative sign common.

  \tt :  \implies 13 + 34 \sqrt{3}

Where as,

  \tt :  \implies a = 13. \:  \:  \: and \: b = 34 \sqrt{3}

Therefore, the Value of a is 13 and b = 34√3.

Similar questions