Math, asked by gopalmanda07, 5 months ago

Find the values of the unknowns "x" and "y"​

Attachments:

Answers

Answered by ashishgond274474
1

Answer:

we know that a triangle has 180°

than y=70°

and a line has made180°

than x=110

Answered by Anonymous
7

\sf \pink{Given}\begin{cases}&\sf{\angle NMA=\bf{50\degree.}} \\ \\ &\sf{\angle MAN=\bf{60\degree.}}\end{cases} \\

To FinD:-

The values of the unknowns "x" and "y".

SolutioN:-

  • All angles in a triangle sum upto 180°.
  • Angle MNA = y°

According to the question,

 \\ :\normalsize\implies{\sf{\angle NMA+\angle MAN+\angle MNA=180\degree}}

\sf {Here}\begin{cases}&\sf{\angle NMA=\bf{50\degree.}} \\ \\ &\sf{\angle MAN=\bf{60\degree.}} \\ \\ &\sf{\angle MAN=\bf{y\degree.}}\end{cases} \\ \\

  • Putting the values,

 \\ :\normalsize\implies{\sf{50\degree+60\degree+y\degree=180\degree}}

 \\ \qquad:\normalsize\implies{\sf{110\degree+y\degree=180\degree}}

 \\ \qquad \ \ \ \ :\normalsize\implies{\sf{y\degree=180\degree-110\degree}}

 \\ \qquad\quad \ \ \ \ \normalsize\therefore\boxed{\mathfrak{\pink{y\degree=70\degree.}}}

VerificatioN:-

 \\ :\normalsize\implies{\sf{\angle NMA+\angle MAN+\angle MNA=180\degree}}

 \\ \qquad:\normalsize\implies{\sf{50\degree+60\degree+70\degree=180\degree}}

 \\ \qquad \ \ \ \  :\normalsize\implies{\sf{180\degree=180\degree}}

 \\ \qquad\quad \ \ \ \ \normalsize\therefore\boxed{\mathfrak{\pink{LHS=RHS.}}}

  • Hence verified.

_________________________________

Now the x° :

  • We know that y° = 70°

  • We also know that all angles in a straight line sum upto 180°.

According to the question,

 \\ :\normalsize\implies{\sf{\angle MNA+x\degree=180\degree}}

  • Angle MNA = 70°

Putting the values,

 \\ :\normalsize\implies{\sf{70\degree+x\degree=180\degree}}

 \\ :\normalsize\implies{\sf{x\degree=180\degree-70\degree}}

 \\ \qquad\quad\normalsize\therefore\boxed{\mathfrak{\pink{x\degree=110\degree.}}}

Value of y° = 70°.

Value of x° = 110°.

Similar questions