Math, asked by avalachmann, 6 months ago

Find the Values of the Variables and the measures of the angles.

Attachments:

Answers

Answered by kukusaini74510
4

Answer:

The sum of the interior angle of triangle is180°

Step-by-step explanation:

(2x+4)°+(2x-9)°+x°=180

2x+4+2x-9+x=180

2x+2x+x+4-9=180

5x-5=180

5x=180-5

5x=175

x =  \frac{175}{5}  \\  \\  x = 35

angle \ q =( 2 \times 35 + 4) \\  \\  =( 70 + 4) \\  \\  = 74

angle \: p =( 2 \times 35 - 9) \\  \\  = 70 - 9 \\  \\  = 61

angle \: r = 35

Answered by sangram0111
0

Given:

Find the Values of the Variables and the measures of the angles.

Solution:

Know that the sum of the interior angle of a triangle is \[180^\circ \].

\[\begin{array}{l} \Rightarrow \left( {2x + 4} \right)^\circ  + \left( {2x - 9} \right)^\circ  + x^\circ  = 180^\circ \\ \Rightarrow 5x - 5^\circ  = 180^\circ \\ \Rightarrow x = \frac{{185^\circ }}{5}\\ \Rightarrow x = 37^\circ \end{array}\]

Find the measure of each angle of the triangle,

Find angle Q,

\[\begin{array}{l} \Rightarrow \angle Q = \left( {2x + 4} \right)^\circ \\ \Rightarrow \angle Q = 2 \times 37^\circ  + 4^\circ \\ \Rightarrow \angle Q = 74^\circ  + 4^\circ \\ \Rightarrow \angle Q = 78^\circ \end{array}\]

Find angle P,

\[\begin{array}{l} \Rightarrow \angle P = \left( {2x - 9} \right)^\circ \\ \Rightarrow \angle P = 2 \times 37^\circ  - 9^\circ \\ \Rightarrow \angle P = 74^\circ  - 9^\circ \\ \Rightarrow \angle P = 65^\circ \end{array}\]

Find angle R,

\[\begin{array}{l} \Rightarrow \angle R = x^\circ \\ \Rightarrow \angle R = 37^\circ \end{array}\]

Hence, the value of the variable is \[37^\circ \] and the measures of \[\angle P,\angle Q\] and \[\angle R\] are \[78^\circ ,65^\circ \] and \[37^\circ \] respectively.

Similar questions