Math, asked by rajeevnegi, 11 months ago

Find the values of w, 2 (w + 1) ≤ 4 (w + 2)
And plot it on a graph

Answers

Answered by AbhijithPrakash
5

Answer:

2\left(w+1\right)\le \:4\left(w+2\right)\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:w\ge \:-3\:\\ \:\mathrm{Interval\:Notation:}&\:[-3,\:\infty \:)\end{bmatrix}

Step-by-step explanation:

2\left(w+1\right)\le \:4\left(w+2\right)

\gray{\mathrm{Expand\:}2\left(w+1\right):\quad 2w+2}

\gray{\mathrm{Expand\:}4\left(w+2\right):\quad 4w+8}

2w+2\le \:4w+8

\gray{\mathrm{Subtract\:}2\mathrm{\:from\:both\:sides}}

2w+2-2\le \:4w+8-2

\gray{\mathrm{Simplify}}

2w\le \:4w+6

\gray{\mathrm{Subtract\:}4w\mathrm{\:from\:both\:sides}}

2w-4w\le \:4w+6-4w

\gray{\mathrm{Simplify}}

-2w\le \:6

\gray{\mathrm{Multiply\:both\:sides\:by\:}-1\mathrm{\:\left(reverse\:the\:inequality\right)}}

\left(-2w\right)\left(-1\right)\ge \:6\left(-1\right)

\gray{\mathrm{Simplify}}

2w\ge \:-6

\gray{\mathrm{Divide\:both\:sides\:by\:}2}

\dfrac{2w}{2}\ge \dfrac{-6}{2}

\gray{\mathrm{Simplify}}

w\ge \:-3

Attachments:
Similar questions