Math, asked by bhaskarbaningpathak, 8 months ago

Find the values of x and y
5x+4y-4=0
x-20=12y

Answers

Answered by Vamprixussa
3

Given equations

5x+4y-4=0\\5x+4y=4--(1)

\\x-20=12y\\x-12y=20--(2)

Multiplying the first equation by 3, we get

15x+12y=12

Now solving,

15x+12y=12\\\underline{x-12y=20}\\\underline{\underline{16x=32}}

x = \dfrac{32}{16}

\implies  x=2

Substituting the value of x in the second equation, we get,

\implies 2-12y=20\\\implies -12y=20-2\\\implies -12y=18

\implies y = \dfrac{-18}{12} = \dfrac{-3}{2}

\boxed{\boxed{\bold{Therefore, \ the \ values \ of \ x \ and \ y \ are \ 2 \ and \ \frac{-3}{2} }}}}}}}}

                                                       

Answered by Aloi99
8

Given:-

➜5x+4y=4-(1)

➜x-12y=20-(2)

\rule{200}{1}

To Find:-

✪The Values of x and y?

\rule{200}{1}

AnsWer:-

☞x=-4

☞y=12/7

\rule{200}{1}

★Multiply (2) with 5★

↝5x-60y=100-(3)

♦Subtract (3) and (1)♦

•5x+4y=4

•5x-60y=100

➜-56y=-96

➜y= \frac{\cancel{-96}}{\cancel{-56}}

☞y= \frac{12}{7} or 1.71[Approx]-(4)

•Put (4) in (1)•

↝5x+4× \frac{12}{7} =4

↝5x+4×12=4×7

↝5x+48=28

↝5x=28-48

↝x= \frac{\cancel{-20}}{\cancel{5}}

↝x=-4

\rule{200}{2}

Similar questions