Math, asked by Angelaniya2018, 1 year ago

Find the values of x and y if the median of the following data is 31 ?

Attachments:

Answers

Answered by pushpakumaridevesh
5

Answer:

Step-by-step explanation:

Attachments:
Answered by Anonymous
57

\huge{\underline{\underline{\blue{\mathfrak{Answer :}}}}}

\begin{tabular}{|c|c|c|}\cline{1-3}\ \bigstar\:{\bf{Class}\: \bigstar}& \bigstar\:{\bf{frequency}\: \bigstar}& \bigstar\:{\bf{C.F.}\: \bigstar} \\ \cline{1-3}\ 0-10 & 5 & 5 \\ \cline{1-3}\ 10-20 & x & 5+x \\ \cline{1-3}\ 20-30 & 6 & 11+x \\ \cline{1-3}\ 30-40 & y & 11+x+y \\ \cline{1-3}\ 40-50 & 6 & 17+x+y \\ \cline{1-3}\ 50-60 & 5 & 22+x+y \\ \cline{1-3}\end{tabular}

N = 22 + x + y = 40

x + y = 18 .........(1)

We know that,

\huge{\boxed{\boxed{\green{\sf{Median = L + (\frac{\frac{N}{2} - C. F}{f} )\times h}}}}}

Where,

L = 30, f = y, h = 10 and C. F = (11 + x)

 \sf{31 = 30 + ( \frac{20 - (11 +x)}{y} ) \times 10} \\  \\  \sf{1 =  \frac{(9 - x)}{y} \times 10 } \\  \\  \sf{y = 90 - 10x} \\  \\  \sf{10x + y = 90}....(2) \\  \\  \bf{from \: equation \: 1} \\  \\  \sf{x = 18 - y} \\  \\  \bf{put \: value \: of \: x \: in \: equation \: 2} \\  \\  \sf{10(18 - y) + y = 90} \\  \\  \sf{180 - 10y + y = 90} \\  \\  \sf{ - 9y = 90 - 180} \\  \\  \sf{y =  \frac{  \cancel{- 90}}{ \cancel{ - 9}} } \\  \\ \sf{y = 10} \\  \\  \large{ \boxed{ \orange{ \sf{y = 10}}}} \\  \\  \bf{put \: value \: of \: y \: in \: equation \: 1} \\  \\  \sf{x + 10 = 18} \\  \\  \sf{x = 8} \\  \\ \large{ \boxed{ \purple{ \sf{x = 8}}}}

Similar questions