Find the values of x and y in the following
Answers
Answer:
I'm writing according (x, y) for each
Step-by-step explanation:
1.(55,55)
2.(100,50)
3.(120,30)
4.(40,70)
5.(60,150)
6.(50,130)
Answer:
Step-by-step explanation:
(i)∠x=∠y {∠s opposite to equal sides are equal}
now in Δ
70+X+Y=180 {∠ sum property of a triangle}
70+X+X=180 {X=Y}
70+2X=180
2X=180-70
2X=110
X=110/2
X=55
X=55 , Y=55 {X=Y}
(ii)∠y=50 {angles opposite to equal sides are equal}
in triangle
∠y+50+∠a=180 {∠ sum property of a triangle}
50+50+∠a=180
100+∠a=180
∠a=180-100
∠a=80
∠a+∠x=180
80+x=180
x=180-80
x=100
(iii)∠y=30 {VERTICALLY OPPOSITE ANGLES}
IN TRIANGLE
∠Y+∠X+∠B=180 {∠ sum property of a triangle}
30+X+30=180
60+X=180
X=180-60
X=120
(iv)110+∠c=180
∠=180-110
∠c=70
∠y=∠c=70 {angles opposite to equal sides are equal}
in triangle
70+70+x=180 {∠ sum property of a triangle}
140+x=180
x=180-140
x=40
(v)30+∠y=180
∠y=180-30
∠y=150
in triangle
30+x+90=180 {∠ sum property of a triangle}
120+x=180
x=180-120=60
(vi) 80=∠e {vertically opposite angles}
in triangle
angle x=angle f {angles opposite to equal sides are equal}
x+f+80=180 {∠ sum property of a triangle}
x+x+80=180
2x+80=180
2x=180-80
2x=100
x=50
x+80=y {exterior angle property}
50+80=y
130=y