Math, asked by riyanghori7502, 1 year ago

Find the values of x if square root of √2x+9+x=13

Answers

Answered by soniyaverma32
0

Step-by-step explanation:

√2x+9+x=13

√2x+x+9-13=0

√3x-4=0

√3x=4

x=4\√3

Answered by charliejaguars2002
3

Answer:

\Large\boxed{X=\frac{160}{3}=53.3 }

Step-by-step explanation:

Given:

√2x+9+x=13

To find the value of x, first you have to isolate by the x on one side of the equation of square root.

Solutions:

First, you have to used the square from both sides.

\displaystyle (\sqrt{2x+9+x)^2}=13^2

Expand by using the distributive property.

\Large\boxed{\textnormal{Distributive property}}

\displaystyle a(b+c)=ab+ac

Used radical rule.

\Large\boxed{\textnormal{RADICAL RULES FORMULA}}

\displaystyle \sqrt{B=B^\frac{1}{2}}

Rewrite the problem down.

\displaystyle ((2x+9+x)^\frac{1}{2})^2

Used exponent rule.

\Large\boxed{\textnormal{EXPONENT RULES FORMULA}}}

\displaystyle (A^B)^C=A^B^C

(2x+9+x)^\frac{1}{2}^2

Solve.

\displaystyle \frac{1}{2}*2

\displaystyle \frac{1*2}{2}=\frac{2}{2}=1

\displaystyle 2x+9+x

Add. (refine.)

\displaystyle 2x+x=3x

\displaystyle 3x+9

Solve with exponent.

\displaystyle 13^2=13*13=169

\displaystyle 3x+9=169

Subtract by 9 from both sides.

\displaystyle 3x+9-9=169-9

Solve.

Subtract the numbers from left to right.

\displaystyle 169-9=160

\displaystyle 3x=160

Then, you divide by 3 from both sides.

\displaystyle \frac{3x}{3}=\frac{160}{3}

Solve.

\displaystyle \boxed{x=\frac{160}{3}}

Divide numbers from left to right.

\displaystyle 160\div3=\boxed{53.3}

\Large\boxed{X=\frac{160}{3}=53.3 }

As a result, the correct answer is x=160/3=53.3.

Similar questions