Math, asked by sangeetajadhav71975, 5 months ago


Find the values of x,y and z

Attachments:

Answers

Answered by MasterDhruva
12

➤ Answer :-

{\tt \longrightarrow \dfrac{4}{( - 9)} = \dfrac{44}{\sf x} = \dfrac{\sf y}{36} = \dfrac{( - 144)}{\sf z}}

In this problem, we will solve step by step.......

Value of 'x' :-

{\tt \longrightarrow \dfrac{4}{( - 9)} = \dfrac{44}{\sf x}}

{\sf \longrightarrow (x) = \tt \dfrac{44}{4} \times ( - 9)}

{\tt \longrightarrow \cancel\dfrac{44}{4} \times ( - 9) = \boxed{\tt 11 \times ( - 9)}}

{\tt \longrightarrow \orange{\boxed{\sf (x) \:  \tt = ( - 99)}}}

━━━━━━━━━━━━━━━

Value of 'y' :-

{\tt \longrightarrow \dfrac{4}{( - 9)} = \dfrac{ \sf y}{36}}

{\sf \longrightarrow (y) = \tt \dfrac{36}{( - 9)} \times 4}

\tt \longrightarrow \cancel \dfrac{36}{( - 9)} \times 4 = \boxed{\tt ( - 4) \times 4}

{\tt \longrightarrow \orange {\boxed{\sf (y) \tt = ( - 16)}}}

━━━━━━━━━━━━━━━

Value of 'z' :-

{\tt \longrightarrow \dfrac{4}{( - 9)} = \dfrac{( - 144)}{\sf z}}

{\sf \longrightarrow (z) \tt \: = \dfrac{( - 144)}{4} \times ( - 9)}

{\tt \longrightarrow \cancel \dfrac{( - 144)}{4} \times ( - 9) = \boxed{\tt ( - 36) \times ( - 9)}}

{\tt \longrightarrow \orange{\boxed{\sf (z) = \tt 324}}}

Answered by sara122
6

  \\ \large\mathfrak {\underline \purple{ \:  \:  \:  \:  \:  \:  \:  \: question \mapsto \:  \:  \:  \:  \:  \:  \:  \:   }} \\  \\

Find the values of x , y and z

 \large \bf \bigstar \frac{4}{ - 9}  =  \frac{44}{x}  =  \frac{y}{36}  =  \frac{ - 144}{z}  \bigstar

 \\  \\

  \\  \large\mathfrak {\underline \purple{ \:  \:  \:  \:  \:  \:  \:  \: solution \mapsto \:  \:  \:  \:  \:  \:  \:  \:   }} \\  \\

  \large\ast \bf finding \: the \: value \: of \: \blue x \\  \\ \large \tt\blue➦  \frac{4}{( - 9)}  =  \frac{44}{x}  \\  \\ \large \tt\blue➦ 4x = 44 \times ( - 9) \\  \\ \large \tt\blue➦ x =  \frac {\cancel{44} {}^{11}  \times ( - 9)} {\cancel{4} } \\  \\ \large \tt\blue➦ x = 11 \times ( - 9) \\  \\ \large \tt\blue➦ x =  - 99 \\  \\   \large\sf  \therefore \red{ \: the \: value \: of \: x \: is \:  - 99}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \large \bf \: finding \: the \: value \: of \:  \blue y \\  \\ \large \tt\blue➦  \frac{4}{( - 9)}  =  \frac{y}{36}  \\  \\ \large \tt\blue➦ 4 \times 36 = y \times ( - 9) \\  \\ \large \tt\blue➦ 144 = y \times ( - 9) \\  \\ \large \tt\blue➦ y \times ( - 9) = 144 \\  \\ \large \tt\blue➦ y =  \frac {\cancel{144} {}^{16} }{ \cancel{ - 9} } \\  \\ \large \tt\blue➦ y =  - 16 \\  \\  \large \bf \therefore \:  \red{the \: value \: of \: y \: is \:  - 16} \\  \\

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \large \bf \: finding \: the \: value \: of \:  \blue z \\  \\\large \tt\blue➦ \frac{4}{( - 9)} =  \frac{( - 144)}{z}   \\  \\   \large \tt\blue➦ 4 z =(  - 144) \times ( - 9) \\  \\ \large \tt\blue➦ z =  \frac {\cancel{ - 144} {}^{36}  \times ( - 9)}{ \cancel{4} } \\  \\ \large \tt\blue➦ z =  (- 36 )\times ( - 9) \\  \\ \large \tt\blue➦ z = 324 \\  \\  \large \bf \therefore \red{the \: value \: of \: z \: is \: 324}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \\  \\

  \\ \large\mathfrak {\underline \purple{ \:  \:  \:  \:  \:  \:  \:  \: note \mapsto \:  \:  \:  \:  \:  \:  \:  \:   }} \\  \\

  • Here we have Cross Multiplied the equation .

  • In cross multiplication, we multiple the numerator of the first fraction with the denominator of the second fraction and the numerator of the second fraction with the denominator of the first .

  • The top number is the numerator .

For ex 2/4 ........here 2 is the numerator.

  • The bottom number is the denominator.

For ex 2/4 .........here 4 is the denominator.

Similar questions