Math, asked by 11monish11, 5 months ago

Find the values of x, y and z. Also their respective angle measures in each
problem.
Please help fast

Attachments:

Answers

Answered by annuverma11
1

Step-by-step explanation:

(1) (4z+6)° = 106° [alternative crossponding angle]

z = 25°

x° = 180°- 106° [consecutive interior angle]

= 74°

x° = 2y° (crossponding angle)

74° = 2y°

y° = 37°

(2) 14y-42° = 11y+6°

3y = 48°

y = 16°

(3) 6x+7° = 180° -65°(consecutive interior angle)

6x +7° = 115°

6x = 108°

x = 18°

(y+9) ° +65° = 180°[supplementry angle]

y+9° = 180° -65°

y = 104°

(4) 5y-4° +3y = 180°

8y = 184°

y° = 23°

and 2x+13° = 3y°

2x + 13° = 3×23

2x = 69-13

2x = 56°

x = 28°

I hope this is helpful for you

Answered by amitnrw
0

Given :  intersection of lines

To Find : Values of x , y & z

Solution:

Properties of angles formed by transversal line  with two parallel lines :

• Corresponding angles are congruent.  

• Alternate angles are congruent.  ( Interiors & Exterior  both )  

• Interior angles are supplementary. ( adds up to 180°)

top left

106°  and 2y are linear pair

=> 106°  + 2y = 180°

=> 2y = 74°

=> y = 37°

x & 2y are corresponding angles

=> x = 2(37)

=>x = 74°

x and 4z + 6 are alternate interior angles

=> 74 = 4z + 6

=> 4z = 68

=> z = 17°

top right

14y - 42 = 11y + 6  ( vertically opposite angles)

=> 3y = 48

=> y = 16

bottom left

65°  and  y+9 are linear pair

y + 9° + 65° = 180°

=> y = 106°

y + 9° = 6x + 7°  (alternate interior angles)

=> 106° + 9° = 6x + 7°

=> 108°  = 6x

=>  x = 18°

bottom right

5y - 4 + 3y =  180°

=> 8y = 184°

=> y = 23°

3y = 2x + 13

=> 3(23) = 2x + 13

=> 56 = 2x

=> x = 28

Learn More:

If a transversal intersects two parallel lines then, which of the ...

https://brainly.in/question/18161325

7. If a transversal intersects two lines parallel lines then prove that ...

https://brainly.in/question/18440350

Similar questions