Math, asked by ravishankar20041973, 1 year ago

Find the values (s) of k so that the quadratic equation 3x2–2kx+12= 0 has equal roots.

Answers

Answered by originaljustice
11
mark it as brainliest
Attachments:
Answered by abhi569
26

Given equation : 3x^2 - 2kx + 12 = 0


On comparing the given equation with ax^2 + bx - c = 0  we get


a = 3

b = -2k

c = 12



Therefore, Discriminant = b^2 - 4ac

                                         = ( -2k )^2 - 4( 3 ) ( 12 )

                                         = 4k^2 - 144

                                         

We know, when zeroes are equal, discriminant = 0



So, 4k^2 - 144 = 0

4k^2 = 144

k^2 = 144 / 4

k^2 = 36

k^2 = ( 6 )^2 or ( - 6 )^2

k = 6 or - 6




Therefore the value( s ) of k is either 6 or -6.


\:


Similar questions