Math, asked by danishauh4917, 8 months ago

Find the valur of (1/4)-2-3(8)2/3(4)0+(9/16)-1/2

Answers

Answered by BrainlyRaaz
7

Question:

(1/4)^-2 - 3(8)^⅔ (4)^0 + (9/16)^-1/2

Solution :

Given :

(1/4)^-2 - 3(8)^⅔ (4)^0 + (9/16)^-1/2

To find :

  • Simplify the expression =?

Step-by-step explanation :

(1/4)^-2 - 3(8)^⅔ (4)^0 + (9/16)^-1/2

4^2 - 3(2^3)^⅔ × 1 + (3/4)^2 × (-1/2)

16 - 3 × 2^2 + (3/4)^-1

16 - 12 + 4/3

4 + 4/3

12 + 3/3

16/3.

Therefore, (1/4)^-2 - 3(8)^⅔ (4)^0 + (9/16)^-1/2 = 16/3

Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Solution-} \\

\textsf{Given that,}

 \sf{  \bigg(\frac { 1} { 4 } \bigg ) ^ {  - 2 } - 3 (  8  ) ^ \frac { 2 }{3}  \times (  {4})^{0}   +  \bigg( \frac {9} { 16 } \bigg ) ^{ -   \frac{1}{2} } } \\

 \sf{  = \bigg(\frac { 4 } { 1 } \bigg ) ^ { 2 } - 3 (  {2}^{3}  ) ^ \frac { 2 }{3}  \times ( 1 ) +  \bigg( \frac { 16} { 9 } \bigg ) ^{  \frac{1}{2} } } \\

 \sf{  =  16 - 3  \times   {2}^{ \cancel3 \times  \frac { 2 }{ \cancel3}} +   \left \{\bigg( \frac { 4} {3} \bigg ) ^{ 2}  \right \} ^{ \frac{1}{2} } } \\

 \sf{  =  16 - 3  \times    {2}^{2}  +  \bigg( \frac { 4} {3} \bigg ) ^{  \cancel2 \times  \frac{1}{ \cancel2} }     } \\

 \sf{  =  16 - 3  \times   4 +  \frac { 4} {3} } \\

 \sf{  =  16 - 12+  \frac { 4} {3} } \\

 \sf{  = 4+  \frac { 4} {3} } \\

 \sf{   =   \frac { 16} {3} } \\

 \sf{   =5   \frac { 1} {3} } \:  \bf{Ans}. \\

Hope this helps!

Similar questions