Math, asked by singhabha1822, 6 months ago

Find the valur of a , if the distance between the points A(-3, -14) and B(a, -5) is 9 units​

Answers

Answered by aryan073
2

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Q1) Find the value of a, if the distance between the point A(-3,-14) and B(a,-5) is 9units.

 \:  \:  \blue \bigstar{ \bf{ \: by \: using \: formula \: method}}

 \: \\   \implies \displaystyle \sf{ab =  \sqrt{ ({ - 5 - ( - 14)})^{2}  +   {(a - ( - 3)}^{2} ) }  = 9}

 \:   \\ \implies \displaystyle \sf{ab =  \sqrt{ ({ - 5 + 14})^{2}  +  {(a + 3)}^{2} }  = 9}

 \ \\ :  \mapsto \displaystyle \sf{ab =  ({ - 5 + 14})^{2}  +  {a + 3}^{2}  = 81}

 \:  \mapsto \displaystyle \sf{ab =  {(9)}^{2}  +  {a}^{2}  + 9 + 6a = 81}

 \:  \mapsto \displaystyle \sf{81 = 81+  {a }^{2}  + 6a + 9}

 \:  \mapsto \displaystyle  \sf{81 = 90 +  {a}^{2}  + 6a}

 \:  \mapsto \displaystyle \sf{81 - 90 -  {a}^{2}  - 6a} = 0

  \:  \mapsto \displaystyle \sf{ - 1 -  {a}^{2}  - 6a = 0}

 \:  \:  \mapsto \displaystyle \sf{ -  {a}^{2}  - 6a - 1 = 0}

 \:  \mapsto \displaystyle \sf{ {a}^{2}  + 6a + 1 = 0}

 \:  \:  \:  \bigstar \bf{by \: using \: formula \:method}

 \:  \:  \implies \displaystyle \sf{a =  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }

 \:  \: \\   \implies \displaystyle \sf{a =  \frac{ - 6 \pm \sqrt{ {(6)}^{2} - 4(1)(1) } }{2 \times 1} }

 \:  \:  \implies \displaystyle \sf{a =  \frac{ - 6 \pm \sqrt{36 - 4} }{2} }

 \:  \:  \implies \displaystyle \sf{a =  \frac{ - 6 \pm \sqrt{32} }{2} }

 \:  \:   \implies \displaystyle \sf{a =  \frac{ - 6  \pm  \sqrt{16 \times 2} }{2} }

 \:  \:  \implies \displaystyle \sf{a =  \frac{ - 6  \pm4 \sqrt{2} }{2} }

 \:  \:   \red \bigstar\underline{\boxed{ \displaystyle \sf{a =   \frac{ - 6 +  \sqrt{2} }{2}  \: and \: a =  \frac{ - 6 -  \sqrt{2} }{2} \: is \: the \: answer }}}

Similar questions