Find the valye of x, y, z so that matrices A and B are equal where
A=[x+y z] and B=[3 2]
[1 x-y] [1 7]
Answers
Answered by
3
Answer:
It is given that, A=B
[
x−2
18z
3
y+2
2z
6z
]=[
y
6y
z
x
6
2y
]
Since, matrices are equal then, their corresponding elements are also equal.
⇒ x−2=y
⇒ 3=z ---- ( 1 )
⇒ 2z=6
⇒ 18z=6y ---- ( 2 )
⇒ y+2=x ----- ( 3 )
⇒ 6z=2y
From ( 1 ) we get,
⇒ z=3
Substituting z=3 in equation ( 2 ) we get,
⇒ 18(3)=6y
⇒ 54=6y
⇒ y=
6
54
∴ y=9
Substituting y=9 in equation ( 3 ) we get,
⇒ x=9+2
∴ x=11
⇒ x=11,y=9 and z=3
Similar questions