Math, asked by VikiRihani, 4 months ago

Find the vaue of
(I)( \int\frac{3x+5}{x^2+4x+7}dx
(II) \int\limits {\frac{2x+3}{\sqrt{x^2-3x+1}}} \, dx

Answers

Answered by Seafairy
180

\text{(I)} \int {\frac{3x+5}{x^2-3x+1}}dx

I = \int {\frac{3x+5}{x^2-3x+1}}

3x+5 = A \frac{d}{dx}(x^2+4x+7)+B

3x+5 = A(2x+4)+B

2A = 3 \implies A = \frac{3}{2}\:\:;4A+B = 5 \implies B = -1

I = \int \frac{\frac{3}{2}(2x+4)-1}{x^2+4x+7}dx

I = \frac{3}{2} \int \frac{2x+4}{x^2+4x+7}dx - \int \frac{1}{x^2+4x+7}dx

= \frac{3}{2} \log |x^2+4x+7|+c - \int \frac{1}{(x+2)^2 + (\sqrt{3})^2} dx

\boxed {I=\frac{3}{2}\log|x^2+4x+7|-\frac{1}{3}\tan^{-1} (\frac{x+2}{\sqrt{3}})+c}

_________________________________________

\text{(II)} \int \frac{2x+3}{\sqrt{x^2+x+1}}dx

I = \int \frac{2x+3}{\sqrt{x^2+x+1}}dx

2x+3 = A \frac{d}{dx}(x^2+x+1)+B

2x+3 = A(2x+1)+B

2A = 2 \implies A = 1 \: : \: A+B = 3 \implies B = 2

I = \int \frac{(2x+1)+2}{\sqrt{x^2+x+1}}dx

I = \int \frac{2x+1}{\sqrt{x^2+x+1}}dx+2\int\frac{1}{\sqrt{x^2+x+1}}dx

= 2\sqrt{x^2+x+1}+2\int\frac{1}{\sqrt{(x + \frac{1}{2})^2+ (\frac{\sqrt{3}}{2})^2}}dx

= 2\sqrt{x^2+x+1}+2\log|x+\frac{1}{2}+\sqrt{(x+\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}+c

\boxed{I = 2 \sqrt{x^2+x+1}+2\log|x+\frac{1}{2}+\sqrt{x^2+x+1}|+c}

__________________________________________

{\text{\large{\underline{\underline{Some Integral Values :}}}}}

\int \frac{dx}{a^2-x^2} = \frac{1}{2a}\log|\frac{a+x}{a-x}|+c

\int \frac{dx}{x^2-a^2} = \frac{1}{2a}\log|\frac{x-a}{x+a}|+c

\int \frac{dx}{a^2+x^2} = \frac{1}{a}\tan^{-1}(\frac{x}{a})+c

\int \frac{dx}{\sqrt{a^2-x^2}} = \sin^{-1}(\frac{x}{a})+c

\int \frac{dx}{\sqrt{x^2-a^2}} = \log|x+\sqrt{x^2-a^2}|+c

\int \frac{dx}{x^2+a^2} = \log|x+\sqrt{x^2+a^2}|+c


ItzPrincessKabya01: great job sis ☺️
Seafairy: thank you my dear sister :)
ItzPrincessKabya01: ☺️
Anonymous: Splendid!
Anonymous: Perfect answer
Seafairy: thanks you volphina :)
Anonymous: Outstanding !♡
Seafairy: thank you :)♡
Anonymous: wello
Similar questions