Math, asked by dishankumar, 2 months ago

Find the vector and Cartesian equation of a line joining the points B(4,7,1) and C(3,5,3).​

Answers

Answered by RizwanaAfreen
0

Given:

A line joining the points B(4,7,1) & C(3,5,3)

To Find:

The vector & cartesian equation

Solution:

let $\overrightarrow{a} & $\overrightarrow{b} be the position vectors of the points B(4,7,1) & C (3,5,3).

     $\overrightarrow{a}= 4\hat{i}+7\hat{j}+\hat{k}   ,$\overrightarrow{b}= 3\hat{i} +5\hat{j}+3\hat{k}

VECTOR EQUATION:

The vector equation of the line is,

$\overrightarrow{r}=$\overrightarrow{a}+λ($\overrightarrow{b}-$\overrightarrow{a})      ---------(1)

First we find the value of ($\overrightarrow{b}-$\overrightarrow{a}),

($\overrightarrow{b}-$\overrightarrow{a})=(3\hat{i} +5\hat{j}+3\hat{k}) - (4\hat{i}+7\hat{j}+\hat{k})

($\overrightarrow{b}-$\overrightarrow{a})=-\hat{i}-2\hat{j}+3\hat{k}

By substituting the value of  $\overrightarrow{a}  & ($\overrightarrow{b}-$\overrightarrow{a}) in equation (1),we get

$\overrightarrow{r}=4\hat{i}+7\hat{j}+\hat{k}+λ(-\hat{i}-2\hat{j}+3\hat{k})

CARTESIAN EQUATION:

The cartesian equation of the line is,

x-x₁ /x₂ ₋ x₁ = y-y₁/y₂-y₁=z-z₁/z₂-z₁  --------------(2)

here , (x₁ ,y₁ ,z₁) = (4,7,1)

         (x₂ ,y₂, z₂) = (3,5,3)

By substituting the values of (x₁ ,y₁ ,z₁) & (x₂ ,y₂, z₂) in equation (2),we get

x-4/3-4 = y-7/5-7 = z-1/3-1

  x-4/-1 =  y-7/-2  =z-1/2

The vector equation is $\overrightarrow{r}=4\hat{i}+7\hat{j}+\hat{k}+λ(-\hat{i}-2\hat{j}+3\hat{k})

The cartesian equation is x-4/-1 =  y-7/-2  =z-1/2

Similar questions